

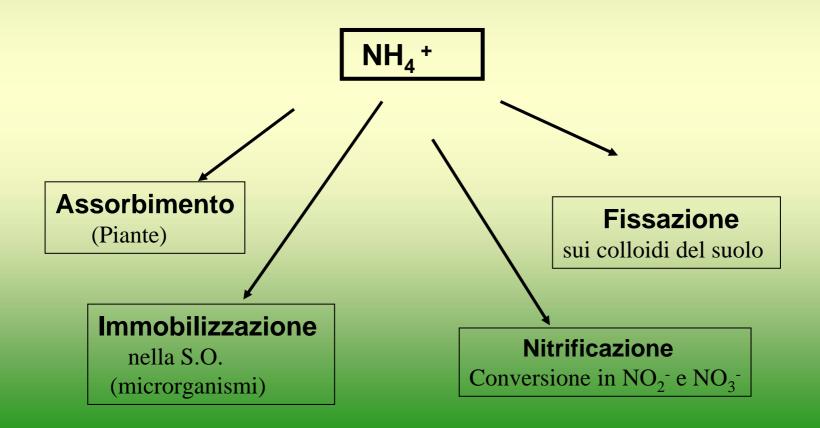

#### Precipitazioni atmosferiche:

$$N_2 + O_2 \longrightarrow 2 NO + O_2 \longrightarrow$$

 $N_2 + O_2$  2 NO +  $O_2$  2 NO<sub>2</sub> ossido di N, (scariche elettriche, alte temp)

reagisce spontaneamente con H<sub>2</sub>O

$$3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$$
 ac. Nitrico


10- 20 Kg/ ha / anno proviene da tali fonti

NH<sub>3</sub> è un gas a temp ambiente

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

A pH ~ 7 la  $(NH_3)$  è trascurabile

- sono 2 forme molto solubili
- entrambe direttamente assorbibili dalle piante



Effect of pH and Nitrogen Source in the Nutrient Solution on the Assimilation and Transpiration
Rate of Cucumber Plants<sup>a</sup>

| рН   | Nitrogen source (mm) |               |             | Assimilation                                                   | Transpiration                                                  |
|------|----------------------|---------------|-------------|----------------------------------------------------------------|----------------------------------------------------------------|
|      | Nitrate<br>N         | Ammonium<br>N | $Ammonia^b$ | rate<br>(mg CO <sub>2</sub> dm <sup>-2</sup> h <sup>-1</sup> ) | rate<br>(g H <sub>2</sub> O dm <sup>-2</sup> h <sup>-1</sup> ) |
| 6.50 | 3                    | 0             | 0           | 0 6.15                                                         |                                                                |
| 7.75 | 3                    | 0             | 0           | 6.55                                                           | 2.18                                                           |
| 6.50 | 3                    | 5             | 0.01        | 6.60                                                           | 1.80                                                           |
| 7.75 | 3                    | 5             | 0.16        | 4.48                                                           | 1.39                                                           |

<sup>&</sup>quot;Based on Schenk and Wehrmann (1979).

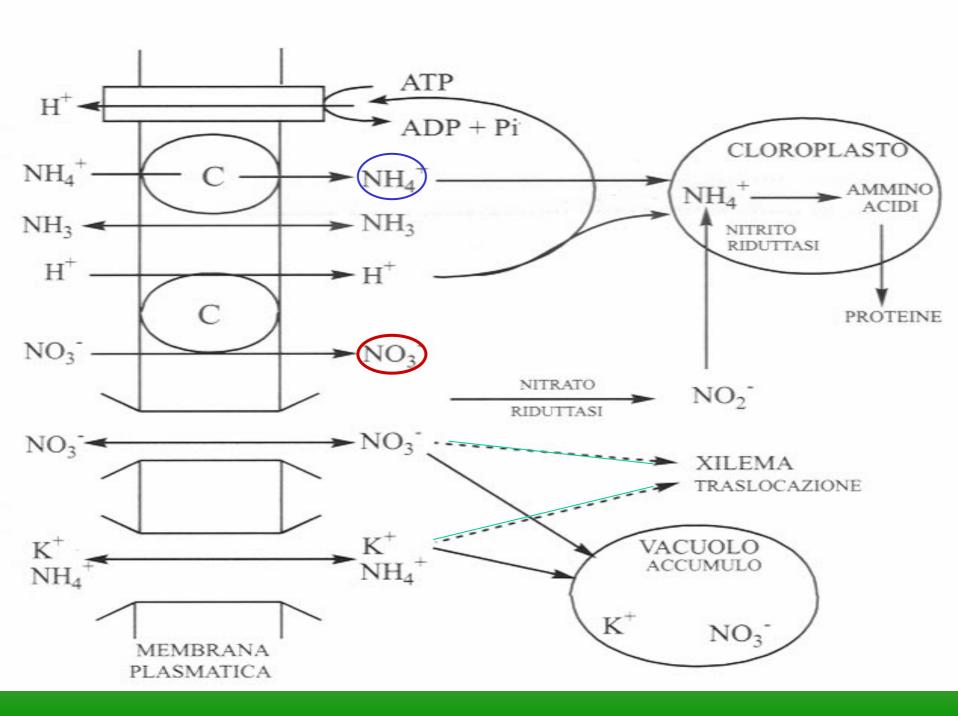
A pH > 7 — Aumento rapido della  $NH_3$ 

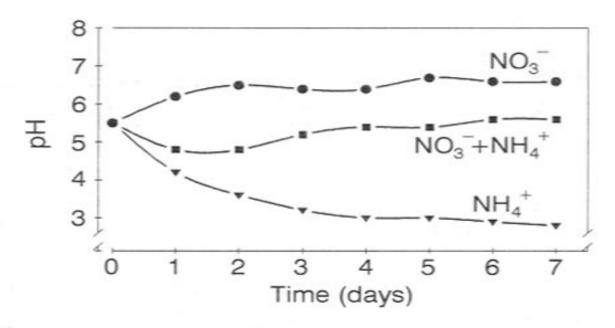
A pH neutro-acido molte specie tollerano elevate concentrazioni di NH<sub>4</sub><sup>+</sup>

$$NH_3 + H+$$
  $\longrightarrow$   $NH_4^+$ 

Tossicità dell'ammoniaca:

Facilità di attraversamento della membrana Nei cloroplasti azione ossidativa a livello dei tilacoidi


Inibizione della germinazione Inibizione della respirazione Danneggiamento delle radici


<sup>&</sup>lt;sup>b</sup>Calculated NH<sub>3</sub> concentration in the aqueous solution.

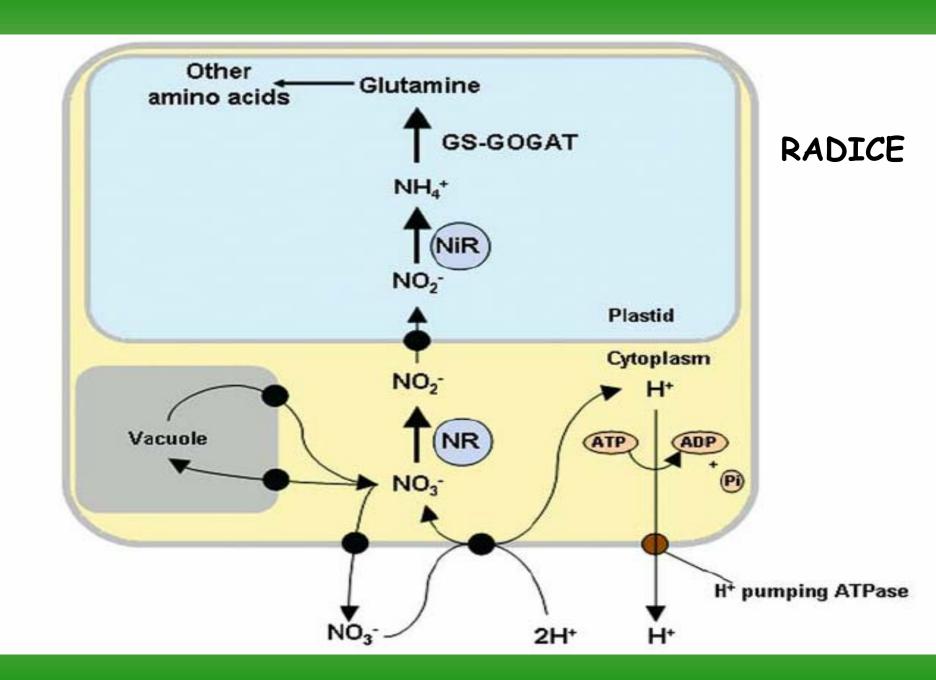
## ASSORBIMENTO NELLE PIANTE DELLE FORME AZOTATE

- Per il **NITRATO**, **NO**<sub>3</sub>-, 2 sistemi:
- 1. Sistema ad alta affinità, dovuto a un carrier inducibile
  efficiente a basse concentrazioni (< 1 mM), con flusso basso
  Attività dell'ATPasi Gradiente protonico

  Cotrasporto 2H+ / NO<sub>3</sub>-
- 2. Sistema a bassa affinità, di tipo costitutivo (canale anionico?) attivo a concentrazioni elevate (> 1mM) ma con flusso maggiore.
- Per lo ione AMMONIO, NH<sub>4</sub><sup>+</sup>
   È assorbito in relazione all'efflusso di H+
   Tramite un Carrier definito ad alta affinità
  - Assorbimento dell' AMMONIACA, NH<sub>3</sub>:
     Diffusione attraverso lo strato lipidico
     Favorita da elevati pH all'esterno della radice






La fonte di N influisce sul pH della soluzione esterna:

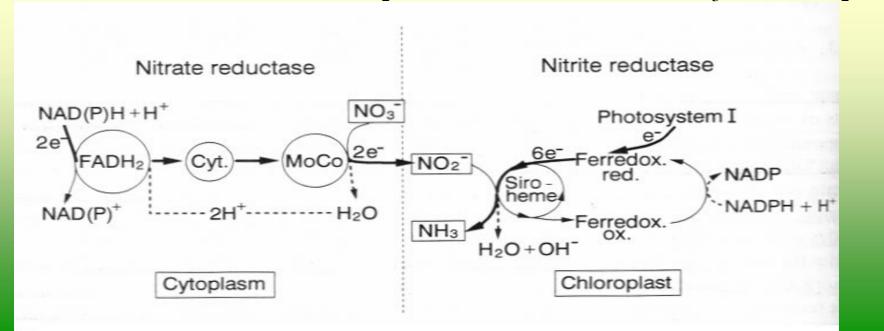
• L'  $NH_4^+$  diminuzione pH soluzione esterna

•  $NH_4^+ + NO_3^-$  iniziale diminuzione di pH (assorbimento di  $NH_4^+$ ) aumento di pH (assorbimento di  $NO_3^-$ )

migliore per la pianta:

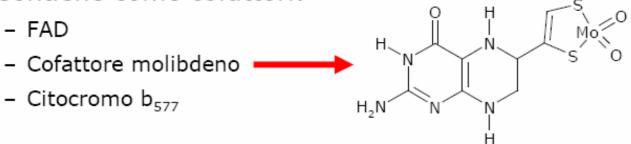
- la produzione di H<sup>+</sup> ~ produzione di OH <sup>-</sup>
   rappresenta la situazione
   La regolazione del pH non richiede elevat
  - La regolazione del pH non richiede elevati costi energetici




## ASSIMILAZIONE ------- RIDUZIONE DEL NITRATO

$$NO_3^- + 8 H^+ + 8 e^- \longrightarrow NH_3 + 2 H_2O + OH^-$$

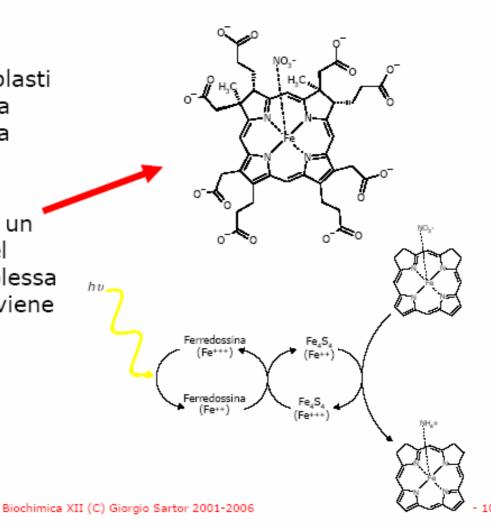
- 2 Enzimi lavorano in serie:
- La Nitrato reduttasi NR


$$NO_3^- + NADH + 2e^- + 2H^+ \longrightarrow NO_2^- + NAD(P) + H_2O$$

- Nitrito reduttasi NiR  $NO_2^- + 6 e^- + 6 H^+ \longrightarrow NH_3 + OH^- + H_2O$ 



### Nitrato reduttasi


- La nitrato reduttasi citosolica trasferisce due elettroni dal NADH al nitrato.
- Contiene come cofattori:



• La catena di trasferimento elettronico:

## Nitrito reduttasi EC 1.7.1.4

- La nitrito reduttasi presente nei cloroplasti agisce attraverso la ferredossina ridotta dalla fotosintesi,
- Il trasferimento di elettroni coinvolge un gruppo siroeme nel quale il ferro complessa lo ione nitrito che viene ridotto a ione ammonio.

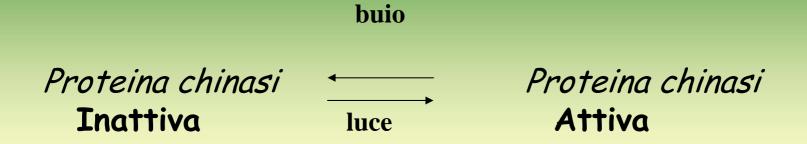


#### La Nitrato reduttasi

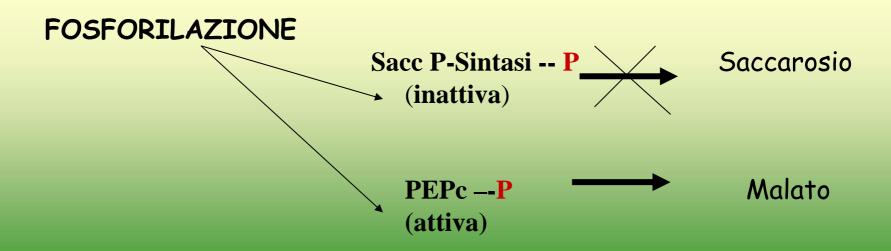
• È un E. substrato-inducibile (regolazione trascrizionale):

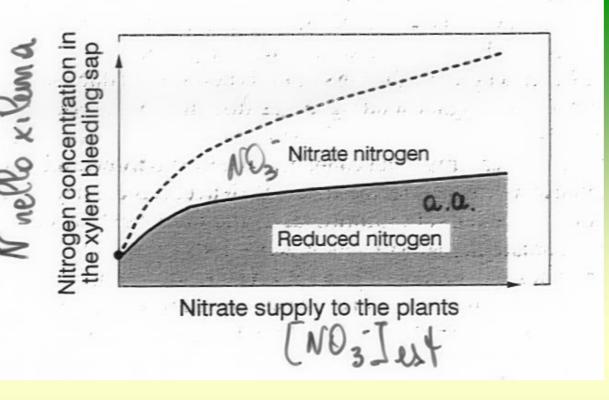
La <u>presenza di NO<sub>3</sub></u>-nel citosol aumento della sintesi dell'E.

Incremento di attività dell'E.


La presenza di prodotti di assimilazione azotati (a.a., amidi..)

Inibizione dell'attività dell'E (feed-back negativo)


- Ha un veloce turn-over : continua sintesi e degradazione
- La sua attività è modulata da alcuni effettori:
- 1. Nitrato agiscono da segnali che influenzano
- 2. Luce la ripartizione del C fotosintetico nelle foglie fra sintesi di saccarosio e Sintesi di a.a.


  due vie competono per gli scheletri C

# Il flusso di C è regolato da una proteina chinasi citosolica



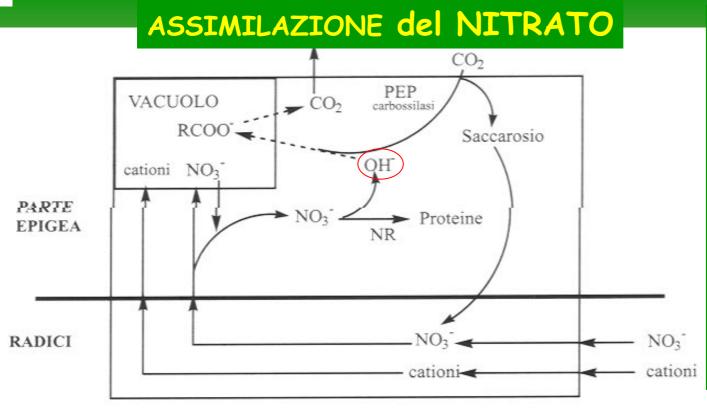
opera una fosforilazione e modula l'attività dei 2 E chiave:





La **riduzione** del nitrato avviene sia nelle *foglie che nelle radici,* dipende da:

- specie vegetale,
- età della pianta,
- concentrazione di NO<sub>3</sub><sup>-</sup>
   esterno


#### In generale:

• Quando il <u>rifornimento</u> esterno di nitrato è <u>basso</u>

Un'elevata quantità è organicato nelle radici Elevata concentrazione di a.a. nel succo xilematico

• <u>All'aumentare della concentrazione esterna</u> di nitrato:

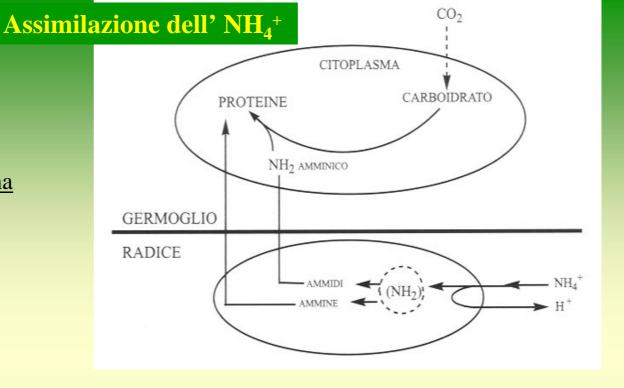
Una proporzione crescente di NO<sub>3</sub><sup>-</sup> viene traslocato alle foglie nello xilema



Avviene prevalentemente nelle foglie

La produzione di OHrichiede la sintesi *di*acidi organici che
dissociando con gli H+
tamponano il pH
intracellulare e vengono
accumulati nel vacuolo

#### Meccanismi di osmoregolazione:


- Ritraslocazione nel floema verso aree in crescita dell'N ridotto (a.a, amidi) + cationi mobili (K e Mg)
- Ritraslocazione verso le radici di anioni di acidi organici (malato) +  $K^+$  successiva decarbossilazione e rilascio di  $HCO_3^-$
- Uptake di NO<sub>3</sub><sup>-</sup>: Il K+ agisce da contro-ione nel trasporto in salita del NO<sub>3</sub><sup>-</sup> assorbito a livello radicale

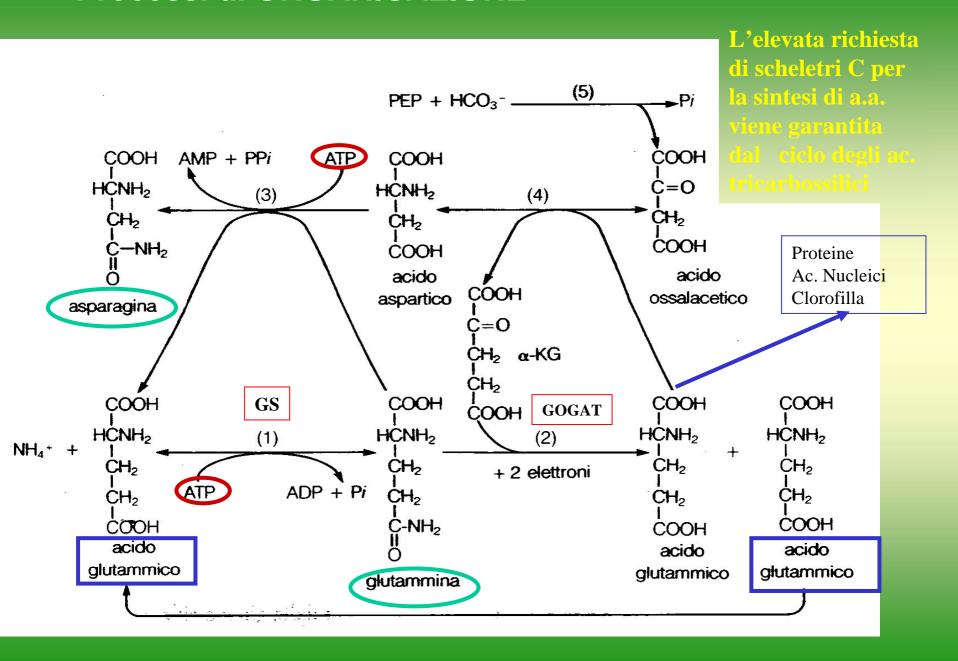
Se il nitrato può essere accumulato nei vacuoli senza danno L'NH<sub>4</sub><sup>+</sup> e soprattutto l'NH<sub>3</sub> sono tossici a basse concentrazioni: Nel citoplasma NH<sub>4</sub><sup>+</sup> < 15 µM

NH<sub>4</sub><sup>+</sup> < 15 μM

Nel vacuolo anche

conc + elevate in quanto il
basso pH previene la
formazione di NH<sub>3</sub>




L'assorbimento di  $NH_4^+$  nella radice comporta il rilascio di  $H^+$  per la compensazione di cariche: antiporto  $NH_4^+$  /  $H^+$ 

• Quasi tutto l'NH<sub>4</sub>+ è assimilato nelle radici: 3 NH<sub>4</sub>+ \rightarrow 3 NH<sub>2</sub>-R + **4 H**<sup>+</sup>

\* Produzione di H\* Acidificazione del citoplasma

Acidificazione del citoplasma e aumento dell'invio di H<sup>+</sup> all'esterno

## Processi di ORGANICAZIONE



La conversione dell'ammonio in azoto organico è il risultato della Attività di 2 Enzimi:

- 1. GS = glutammina sintetasi
- 2. GOGAT = glutammato sintetasi

L'asparagina è la 2<sup>a</sup> ammide importante per le piante in particolare nelle leguminose originarie dei climi temperati

È ottenuta mediante idrolisi dell'ATP

L'N dell'aspartato può derivare dal glutammato

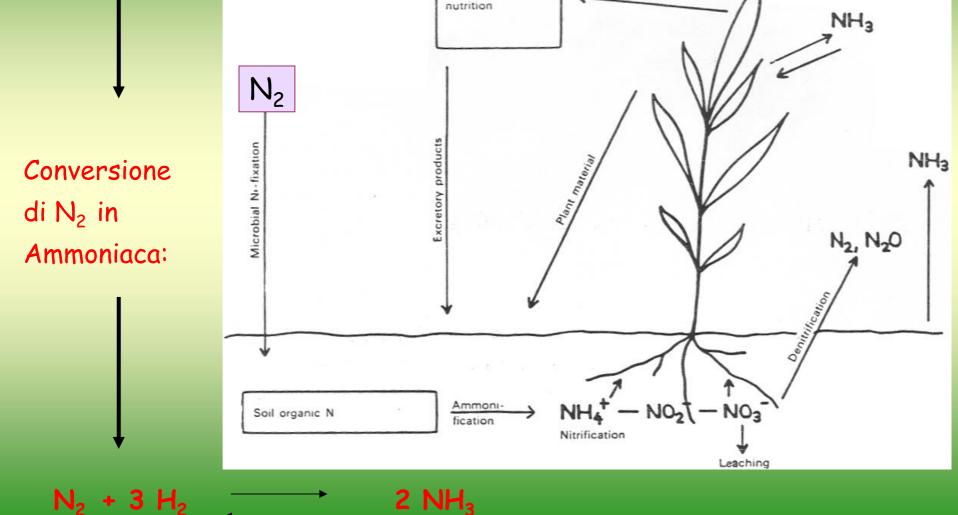
I 4 C derivano dall'ossalacetato

L'asparagina ha le stesse funzioni della glutammina

# Frazioni azotate nelle piante Il turnover dell'N ha 3 tappe principali:



# L'azoto che viene organicato nella pianta resta come tale


È un processo irreversibile

Le 3 frazioni azotate sono influenzate dalla nutrizione:

Aumentando il livello di nutrizione azotata

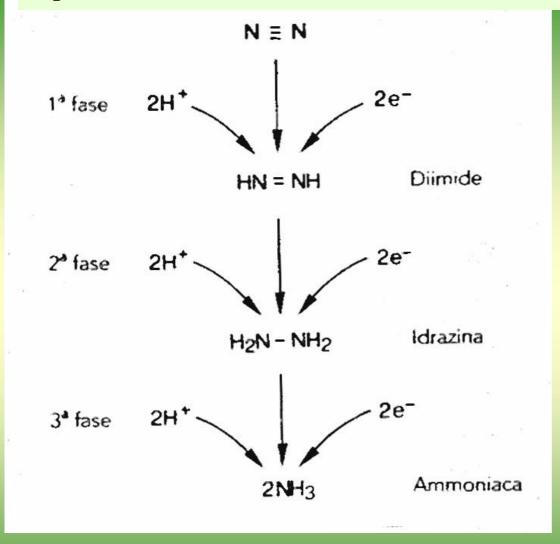
Incremento di tutte la frazioni
ma con intensità differente

## Fissazione dell'azoto atmosferico



Human and animal Processo industriale (Haber - Bosch)
- impiego di catalizzatori
- alta Pressione (200 atm)
- elevate Temperature (400- 600 °C)

# <u>Fissazione biologica</u> ad opera della <u>Nitrogenasi</u>


- Richiede dispendio di energia cellulare (ATP)
- Procede a p e Tambiente.

La **fissazione chimica** ha una capacità di fissazione pari a

1/4 della fissazione biologica

## Il processo di N- fissazione è la risultante di

#### 3 stadi di riduzione :



$$\Delta G_1^{\circ} = + 107 \text{ KJ/ mole}$$

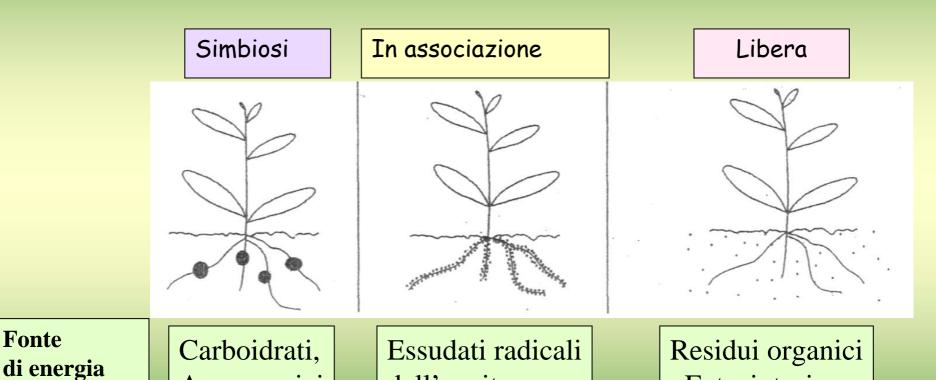
$$\Delta G_2^{\circ} = -27 \text{ KJ/ mole}$$

$$\Delta G_3^{\circ} = -96 \text{ KJ/ mole}$$

$$\Delta Gtot = -16 \text{ KJ/mole}$$

E' un processo esoergonico

richiede una notevole **energia di attivazione** perché l'N<sub>2</sub> è inerte


## N fissazione biologica

3 strategie differenti

fonte energetica utilizzata

per

diversa capacità di fissazione



Kg N fissato/ ettaro/anno

**Fonte** 

50-400

Ac. organici

10 - 200

dall'ospite

1-50

Fotosintesi

### Fissazione di tipo associativo

I batteri diazotrofi in associazione sono eterotrofi

- Azospirillum e Azotobacter (zone tropicali)
- Enterobacter, Klebsiella (zone temperate)

Il **limite principale** consiste proprio nella scarsa disponibilità di **C org** in termini di **quantità** e **qualità**:

• Importanza della composizione del <u>substrato di C organico</u> fornito dall'ospite: preferenza per acidi carbossilici C4 e malato in particolare

## La fissazione di tipo associativo è caratterizzata da

- Poca specificità pianta- ospite il partner è più casuale
- Trasferimento indiretto dell'N ridotto

  alla morte del

  batterio
- I batteri sono molto sensibili alla concentrazione di  $O_2$  e di N nel suolo

Aumento dell'apporto di N nel suolo e diminuzione attività nitrogenasica in

Piantine di grano inoculate con Azospirillum

| $NH_4NO_3$ supply $(g l^{-1})$ | Nitrogenase activity<br>(nmol C <sub>2</sub> H <sub>4</sub> per plant) | Shoot dry weight $h^{-1}$ (g per plant) |
|--------------------------------|------------------------------------------------------------------------|-----------------------------------------|
| 0                              | 200                                                                    | 0.49                                    |
| 0.04                           | . 156                                                                  | 0.97                                    |
| 0.08                           | 10                                                                     | 1.84                                    |
| 0.16                           | 0 +                                                                    | 2.93                                    |

From Cohen et al. (1980).

## La quantità di N fissato per via associativa è molto variabile::

| Plant species                | Proportion of tota plant nitrogen |
|------------------------------|-----------------------------------|
| Rice (Oryza sativa L.)       | 0–35                              |
| Wheat (Triticum aestivum L.) | 0-47                              |
| Sugar cane (Saccharum sp.)   | 2–56                              |
|                              | $(60-80)^b$                       |
| Forage grasses               |                                   |
| Brachiaria humidicola        | 30-40                             |
| Leptochloa fusca             | 2-41                              |

Compiled data from Chalk (1991). Boddey et al. (1991).

## La canna da zucchero ha la maggiore capacità di fissazione:

- alta qualità negli essudati radicali
- alte temperature del suolo
- associazioni a più alta specificità pianta-ospite
- maggiore resistenza alla presenza di N nel terreno

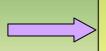
I batteri **diazotrofi associati** possono favorire la crescita della pianta ospite in 2 modi :

- 1) Apporto di N alla pianta mediante N-fissazione
- 2) Produzione di Fitormoni

Produzione di

Fitormoni

auxine, citochinine,


giberelline

•Modificazioni nella morfologia radicale e migliore acquisizione di nutrienti (fosforo)

 Influenza sull'attacco di altri organismi della rizosfera

 ( patogeni , utili alla crescita)

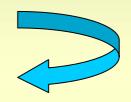
 Prevalenza di N- Fissazione



Canna da zucchero, erbe foraggio C4 in condizioni favorevoli al processo:

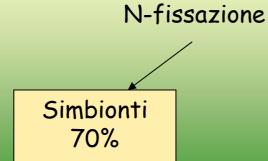
- alta temperatura
- elevata irradiazione
- produzione di essudati radicali

Dominanza dell' Effetto Ormonale




- Piante C3
- Piante in climi temperati
- Associazioni pianta-ospite poco specifiche

#### Batteri diazotrofi liberi


- cianofite) riduzione fotosintetica di N<sub>2</sub>
- eterotrofi processo non (azospirillum) fotosintetico

inadeguata disponibilità di residui organici nel suolo



#### limitata attività di azoto- fissazione

Diverso contributo dei batteri diazotrofi nel processo di

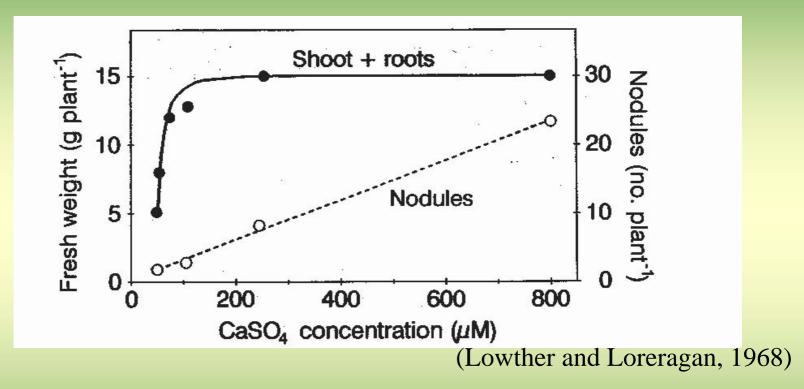


Associati e Liberi 30%

#### Fissazione simbiotica dell'azoto

Le specie **Rhizobium** in simbiosi con le leguminose sono i più importanti azotofissatori

## simbiosi altamente specifica:


solo certi **ceppi** sono **compatibili** con una data leguminosa per formare **noduli funzionanti** 

## - Esempi di rapporto preferenziale tra specie di Rhizobium e piante ospiti.

| Specie di Rhizobium | Piante ospiti                      |  |  |
|---------------------|------------------------------------|--|--|
| R. leguminosarum    | Pisello, Fava, Lenticchia, Cece    |  |  |
| R. trifolii         | Trifoglio                          |  |  |
| R. phaseoli         | Fagiolo                            |  |  |
| R. meliloti         | Erba Medica, Fieno greco, Meliloto |  |  |
| R. japonicum        | Soia                               |  |  |
| R. lupini           | Lupino, Ginestrino                 |  |  |

# Il processo di **nodulazione** ( taglia e numero dei noduli) è favorito da:

1) Elevate concentrazioni di ioni Ca <sup>2+</sup>



- favoriscono la produzione di peli radicali, siti di attacco
- stimolano la produzione di essudati radicali

- 2) valori di pH vicini alla neutralità
- 3) Adeguato **Rifornimento** di **P**: infezione con micorizze

aumento nodulazione

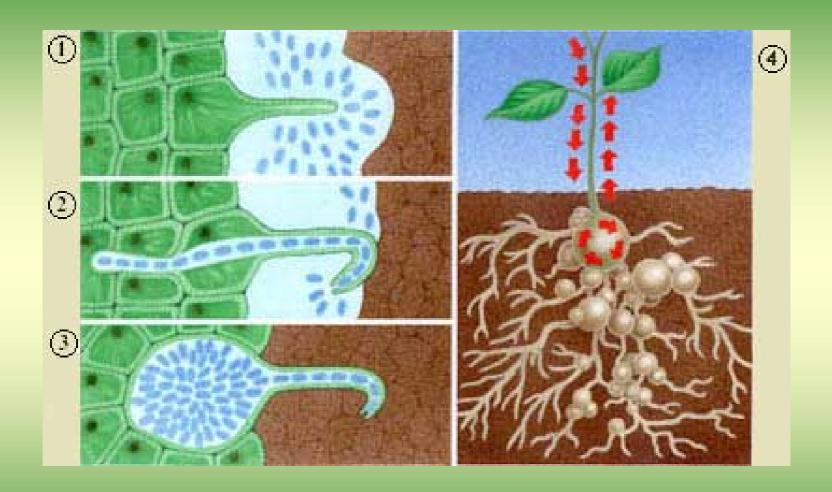
La formazione dei noduli è regolata da :

• Processo di autoregolazione o inibizione da feed-back

- Qualità e quantità della **fonte di N** fornita:
  - il nitrato amplifica il segnale regolativo alle basse concentrazioni
  - l'ammonio interferisce negativamente.

#### Fasi dell' Infezione da Rhizobium

I<sup>a</sup> Tappa dell' infezione:


Interazione rizobio- pianta ospite

Colonizzazione La pianta rilascia essudati chemiotassi contenenti flavonoidi e isoflavonoidi nel batterio: - Attivazione geni nod - Produzione fattori nod Molecole segnale riconosciute + sostanze ormono-simili solo da specie compatibili (lectina) specificità Attacco dei batteri al pelo

II<sup>a</sup> Tappa: incurvamento del pelo radicale (IAA) penetrazione filo di infezione III<sup>a</sup> Tappa **Divisione cellule** corticali Rhizobium libero Parete cellulare Adesione Pelo radicale casuale corretta Adesione polare **Formazione** meristema del nodulo Batteri Batteri invasori **Batteroidi** Vacuolo Cellula infetta Sintesi di radicali - Nucleo Pelo libero Leg-Hb Batteroidi Membrana -Mitocondri Nitrogenasi Cellula infetta peribatteroide Pareti Cellula in fase cellulari

Rhizobium non differenziato

di divisione



Il processo di N-fissazione è attivo dopo 10-21 giorni dall'inizio dell'infezione fase di lag

3 condizioni essenziali per un processo efficiente:

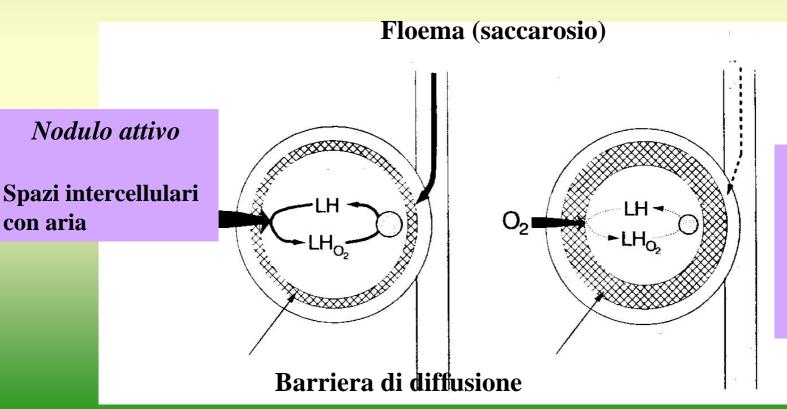
Rifornimento adeguato di **fotosintati** ai batteroidi dei noduli

quantità di C impiegato è variabile

C = 6-12g per g di N fissato

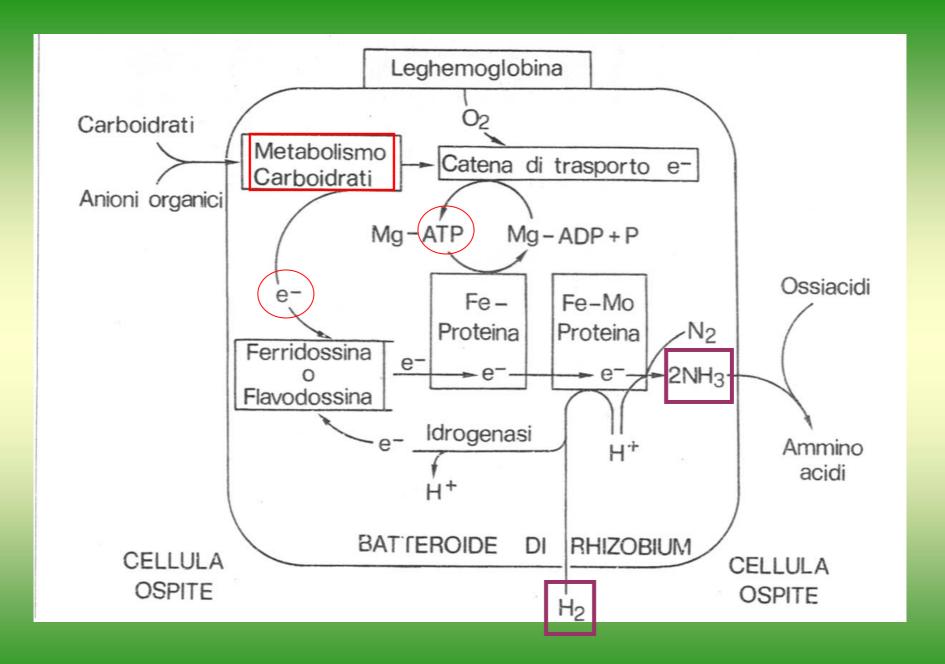
Solve per l'attività di nitrogenasi per l'assimilazione dell'N ridotto

- 2) Mantenimento di basse concentrazioni di O<sub>2</sub> nei noduli
- 3) Rapida esportazione dell'N fissato: traslocazione nodulo-pianta

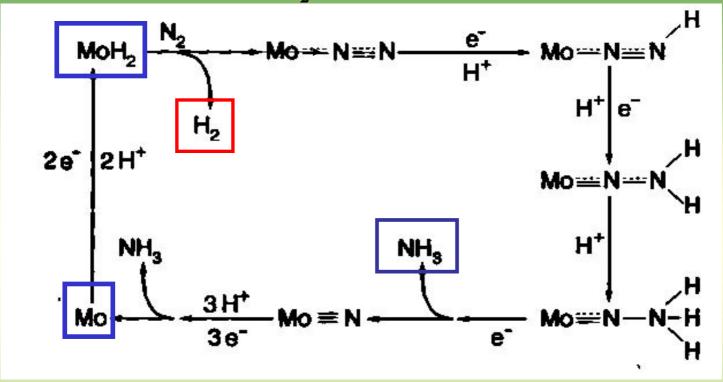

- Elevata domanda di energia (ATP)
- Protezione della nitrogenasi

con aria




Sistema di regolazione della pO<sub>2</sub> a livello cellulare

- 1) Esistenza di una barriera fisica
- 2) Leg-emoglobina




Nodulo non attivo

**Spazi** intercellulari con H<sub>2</sub>O



La protonazione del Mo è una tappa richiesta affinchè  $1'N_2$  si leghi alla proteina  $\longrightarrow$  rilascio di  $H_2$ 



Stechiometria della reazione

$$N_2 + 8 H^+ + 16 ATP \longrightarrow 2 NH_3 + H_2 + 16 ADP + 16 Pi$$

12 ATP per il sistema nitrogenasi + 4 ATP per formazione diH<sub>2</sub>

- L' N fissato è rilasciato come NH<sub>3</sub> dal batteroide al citosol per semplice diffusione attraverso la membrana peribatteroide
- passaggio rapido:

  elevata NH<sub>3</sub> nel batteroide inibizione della nitrogenasi

#### • nel citosol:

#### L'azoto è il nutriente che maggiormente influisce sull'N-fissazione

#### Effetto del nitrato su

• Nodulazione N-starter, effetto stimolatorio Effetto inibitorio ad elevate concentrazioni

• Nitrogenasi — Inibizione dell'attività all'aumentare del rifornimento di N

| Nitrate N                                   | Nitrogenase activity (µmol C <sub>2</sub> H <sub>4</sub> produced per plant h <sup>-1</sup> ) |               | N in shoots   | Dry weight (g per plant)<br>day 49 |         |
|---------------------------------------------|-----------------------------------------------------------------------------------------------|---------------|---------------|------------------------------------|---------|
| fertilizer<br>supply (kg ha <sup>-1</sup> ) | 35 days                                                                                       | 49 days       | (%)<br>day 49 | Shoot and roots                    | Nodules |
| 0                                           | 1.13                                                                                          | <b>†</b> 0.19 | <b>†</b> 1.54 | 2.53                               | 0.18    |
| 25                                          | 2.26                                                                                          | 0.33          | 1.82          | 3.35                               | 0.28    |
| 50                                          | 0.60                                                                                          | 0.10          | 1.67          | 3.65                               | 0.13    |
| 100                                         | 0.14                                                                                          | 0.03          | 1.69          | 4.35                               | 0.11    |

<sup>&</sup>quot;Based on Sundstrom et al. (1982).

La crescita continua ad aumentare per assorbimento della fonte di N minerale