COSTRUZIONI

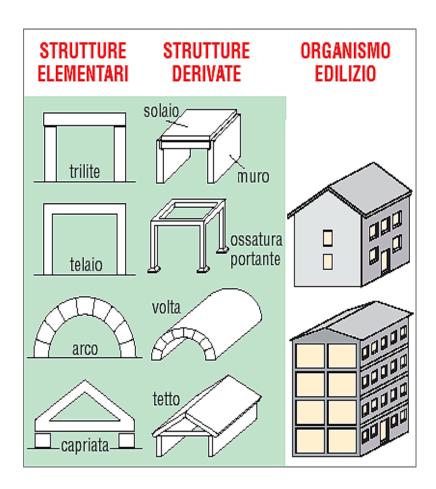
Organismi strutturali

Cos'è una struttura

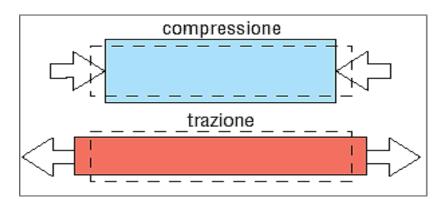
- Osserviamo quattro strutture
- Tipi di struttura
- Verifichiamo le sollecitazioni elementari

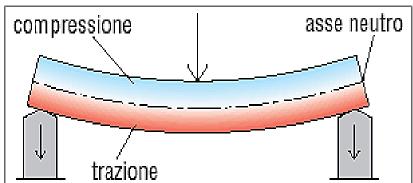
Osserviamo quattro strutture

Il **telaio** è: una struttura rettangolare, formata da pilastri e trave.


La capriata è: una struttura triangolare formata da travi oblique e una trave orizzontale. L'arco è: una struttura curva formata, nel tipo in pietra, da piccoli blocchi a trapezio detti conci.

Tipi di struttura (classificazione)


Strutture elementari: sono le formebase di montaggio dei materiali.


Strutture derivate: sono derivate dalle strutture elementari e servono per racchiudere uno spazio.

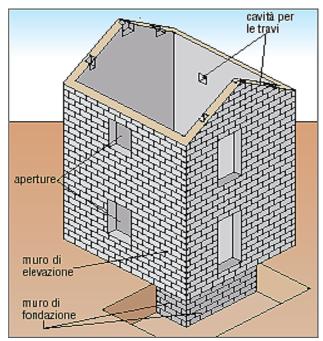
Organismo edilizio: questo termine generale indica qualunque tipo di costruzione ottenuto dalla somma degli elementi precedenti, più le opere di completamento.

Verifichiamo le sollecitazioni elementari

Con una barretta di gomma, che si deforma facilmente, puoi vedere le sollecitazioni principali che agiscono su una struttura.

Compressione: mettendo la barretta in verticale e premendo sul centro della faccia essa si accorcia.

Trazione: tirando la barretta alle due estremità essa si allunga; se continui a tirare alla fine si rompe.


Flessione della trave: mettendo la barretta orizzontale appoggiata su due supporti e applicando una forza sul centro, la barretta si flette.

Casa in muratura

- Strutture verticali
- Strutture orizzontali
- Casa terra-tetto: prospetto
- Casa terra-tetto: sezione trasversale
- Palazzo a molti piani: prospetto
- Palazzo a molti piani: sezione trasversale

Strutture verticali

Come si costruisce un muro: per costruire il muro si usano i *mattoni* di terracotta e la *malta*, iniziando dal basso e procedendo per strati paralleli e sfalsati.

Muro di fondazione: poggia sul terreno ed è fatto di mattoni sistemati in un'apposita trincea scavata lungo il perimetro dell'edificio.

Muro di elevazione: è quello che si trova al di fuori del suolo e che si interrompe in alcuni punti per le *aperture*; il collegamento con le pareti trasversali dà stabilità all'intera struttura.

Strutture orizzontali

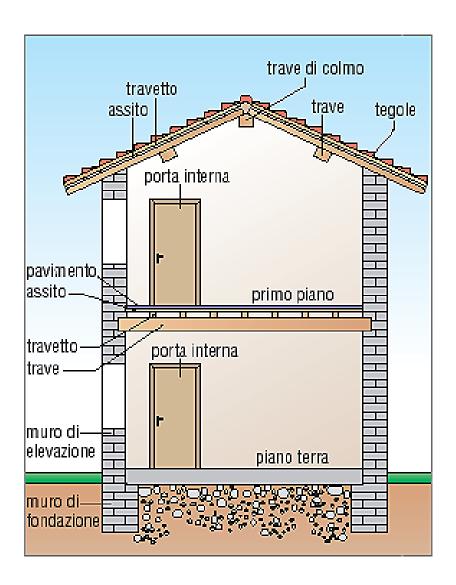
Solaio in legno

E' una struttura orizzontale che sostiene il pavimento, il peso dei mobili e delle persone. Esso è formato da *travi*, *travetti* e *assito* di tavole che copre tutta la superficie.

Tetto (visto dall'interno)

E' la struttura orizzontale che chiude la sommità della casa. Ha una certa pendenza per lo scolo delle acque piovane ed è formato da *travi*, *travetti* e *tavelle* in laterizio.

Casa terra-tetto: prospetto



La facciata è un muro piatto, con la porta di ingresso, due finestre al piano terreno e tre finestre al primo piano.

Il *muro laterale* non ha finestre e arriva al colmo del tetto.

Il tetto è a falde inclinate.

Casa terra-tetto: sezione trasversale

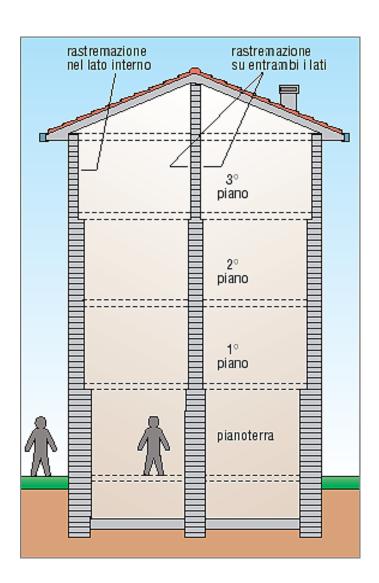
Il *muro di fondazione* è incassato circa 1 m nel terreno.

I *muri di elevazione* laterali salgono fino alla linea di gronda, con le finestre su un lato.

Il solaio è un'orditura di elementi in legno (trave, travetto, assito) con il pavimento.

Il *tetto* ha l'orditura del solaio, inclinata e con le tegole.

Palazzo a molti piani: prospetto



L'edificio ha tre piani fuori terra e il piano terreno.

La facciata è un muro portante piano a intonaco, con elementi decorativi:

- al piano terra finto *bugnato* e finestre incorniciate;
- ai piani superiori tre *cornicioni* orizzontali, *timpani* e cornici sopra la finestre.

Palazzo a molti piani: sezione trasversale

Il disegno mostra lo spessore dei muri paralleli alla strada.

La linea tratteggiata è la posizione dei solai.

Ogni muro è molto largo alla base, poi si restringe di spessore ogni due piani.

Questa *rastremazione* serve per risparmiare materiale e per avere un muro meno pesante.

EDIFICI CON STRUTTURA A TELAIO

- Struttura portante in calcestruzzo armato (c.a.)
- Strutture portante in c. a. prefabbricato
- Strutture portante in acciaio
- Struttura portante in legno

LEGNO

NTC 2008

Il progetto e la verifica di strutture realizzate con legno massiccio, lamellare o con prodotti per uso strutturale derivati dal legno, richiedono la conoscenza dei valori di resistenza, modulo elastico e massa volumica costituenti il profilo resistente, che deve comprendere almeno quanto riportato nella Tab. 11.7.I.

Proprietà di resistenza						
Flessione	$\mathbf{f}_{\mathbf{m},\mathbf{k}}$					
Trazione parallela	$f_{\rm t,0,k}$					
Trazione perpendicolare	$f_{t,90,k}$					
Compressione parallela	$f_{c,0,k}$					
Compressione perpendicolare	$f_{c,90,k}$					
Taglio	$f_{v,k}$					

Proprietà di modulo elastico							
Modulo elastico parallelo	$E_{0,\mathrm{mean}}$						
medio **							
Modulo elastico parallelo	E _{0.05}						
caratteristico	L _{0,05}						
Modulo elastico	E.						
perpendicolare medio **	L'90,mean						
Modulo elastico	G						
tangenziale medio **	Umean						

_		
	Massa volumi	ca
	Massa volumica	$\rho_{\mathbf{k}}$
	caratteristica	,
	Massa volumica	ρ_{mean}
ļ	media *,**	

Il legno è un materiale **omogeneo** ed **anisotropo** per resistenza e deformabilità.

In base alla durezza i legni si classificano in: **DOLCI:** conifere o essenze resinose

DURI: latifoglie

In base a questa classificazione la Tabella 3.1.I delle NTC 2008 fornisce i valori del **peso specifico**

MATEDIALI	PESO UNITÀ DI VOLUME [kN/m³]					
Legnami						
Conifere e pioppo	$4,0 \div 6,0$					
Latifoglie (escluso pioppo)	6,0 ÷ 8,0					

PROPRIETA' FISICHE

Indicano la natura e la struttura dei vari legnami, indipendentemente dall'uso.

ODORE - COLORE - OMOGENEITA'

Si riferiscono all'odore tipico di alcuni legnami, alla tonalità di colore ed alla disposizione omogenea delle fibre.

castagno

abete rosso

acero europeo

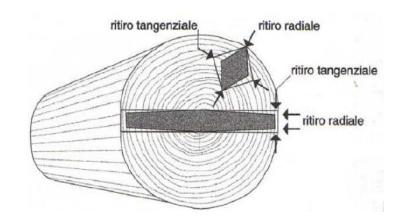
ulivo

larice

betulla

IGROSCOPICITA'

Proprietà che i legnami hanno di cambiare forma e dimensione in relazione all'umidità e alla temperatura. Questa caratteristica può provocare l'imbarcamento (curvatura) delle tavole di legno o spaccature nel tronco. Per ridurre i danni occorre sottoporre il legno ad una accurata stagionatura.


POROSITA'

Capacità di assorbire l'umidità.

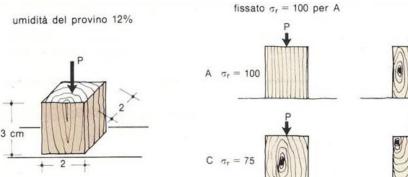
RITIRO

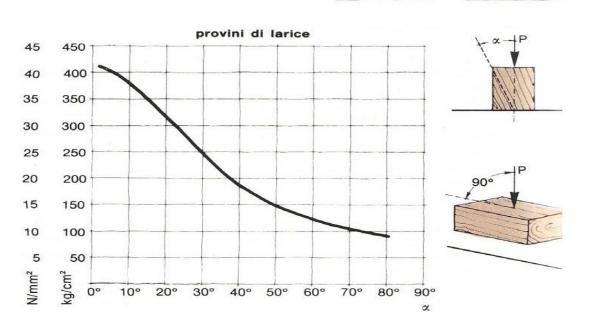
Variazione del volume sotto l'influsso dei cambiamenti di umidità e/o temperatura.

Il ritiro è anisotropo e la parte più vicina alla corteccia è soggetta ad un ritiro più elevato, provocando deformazioni e fessurazioni.

Le caratteristiche meccaniche del legno variano entro limiti che dipendono dall'essenza, dal peso specifico secco, dal grado d'umidità, dalla direzione delle fibre rispetto alla sollecitazione e dai difetti del legno stesso (nodi, cipollature, ecc.).

RESISTENZA A COMPRESSIONE

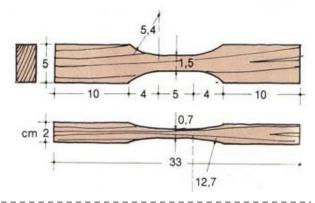

UNI 2853/57


Il carico di rottura viene determinato su provini di $2 \times 2 \times 3$ cm, con umidità 12% risulta:

$$\sigma r = \frac{P}{4} \quad (\text{kg/cm}^2)$$

I valori del carico di rottura variano moltissimo in funzione dell'angolo a.

Nell'ipotesi di **compressione perpendicolare alle fibre** i valori del carico di rottura sono molto inferiori a quello assiale.

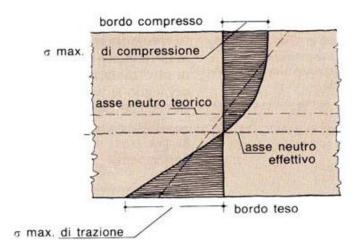


RESISTENZA A TRAZIONE

In generale la resistenza a trazione risulta più grande di quella a compressione (almeno doppia), sempre riferita Parallelamente alle fibre; Tuttavia la resistenza a trazione è notevolmente ridotta dalla presenza dei nodi e dalle irregolarità della fibratura.

Le prove si eseguono su provette con le seguenti caratteristiche:

RESISTENZA A FLESSIONE


Una trave in legno sottoposta a sollecitazione di flessione si deforma producendo sulle fibre interne uno sforzo di compressione ed uno di trazione secondo lo schema di seguito riportato.

Nelle prove, eseguite su dei provini di 2 x 2 x 30 cm di lunghezza, la rottura avviene prima sul bordi compresso, poi su quello teso. Il carico di rottura si determina con la formula:

$$\sigma r = \frac{3}{2} \frac{Pr * 24}{A * h^n}$$

La resistenza a flessione è influenzata dall'umidità e dai difetti.

Inoltre il legno sottoposto a flessione è soggetto al fenomeno del **fluage**: un lentissimo scorrimento delle fibre del materiale nel tempo, nelle strutture sotto carico. Gli effetti del fluage nel legno si verificano con un aumento notevole della freccia di inflessione.

Per **legno massiccio da costruzione** si intendono listelli, tavole, tavoloni e legno squadrato dal taglio o tramite profilatura di tondame in segheria per impieghi strutturali con funzione portante.

Per impieghi in edilizia, il legno massiccio deve essere classificato secondo la resistenza in modo visivo o meccanico conformemente a ÖNORM DIN 4074-1. Per il legno di conifera e il legno di latifoglie esistono classi di resistenza differenti.

In conformità alla UNI EN 338 si individuano diverse CLASSI DI RESISTENZA del legno massiccio strutturale

	Conif	ere										
Class di resistenza	C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50
		(S7 Ta, Lā)*	(S7 Fi, Ki)*			(S10)*		(S13)*				
ρ _k [kg/m³]	290	310	320	330	340	350	370	380	400	420	440	460
f _{m,k} [N/mm ²]	14	16	18	20	22	24	27	30	35	40	45	50
f _{t,0,k} [N/mm ²]	8	10	11	12	13	14	16	18	21	24	27	30
f _{t,90,k} [N/mm ²]	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
f _{c,0,k} [N/mm ²]	16	17	18	19	20	21	22	23	25	26	27	29
f _{C,} 90,k [N/mm ²]	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2
f _{V,k} [N/mm ²]	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0	4,0	4,0	4,0	4,0
E _{0,mean} [N/mm ²]	7000	8000	9000	9500	10000	11000	11500	12000	13000	14000	15000	16000
E _{90,mean} [N/mm ²]	230	270	300	320	330	370	380	400	430	470	500	530
E _{0,05} [N/mm ²]	4700	5400	6000	6400	6700	7400	7700	8000	8700	9400	10000	10700
G _{mean} [N/mm ²]	440	500	560	590	630	690	720	750	810	880	940	1000

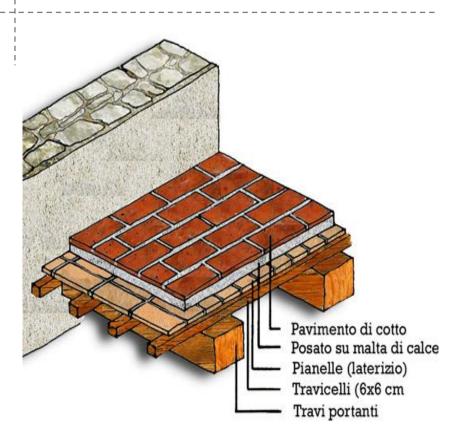
	Latifoglie					
Classi di resistenza	D30	D35	D40	D50	D60	D70
ρ _k [kg/m³]	530	540	550	620	700	900
f _{m,k} [N/mm ²]	30	35	40	50	60	70
f _{t,0,k} [N/mm ²]	18	21	24	30	36	42
f _{t,90,k} [N/mm ²]	0,6	0,6	0,6	0,6	0,6	0,6
f _{c,0,k} [N/mm ²]	23	25	26	29	32	34
$f_{c,90,k} [N/mm^2]$	8,0	8,1	8,3	9,3	10,5	13,5
f _{v,k} [N/mm ²]	4,0	4,0	4,0	4,0	4,5	5,0
E _{0,mean} [N/mm ²]	11000	12000	13000	14000	17000	20000
E _{90,mean} [N/mm ²]	730	800	860	930	1130	1330
E _{0,05} [N/mm ²]	9200	10100	10900	11800	14300	16800
G _{mean} [N/mm ²]	690	750	810	880	1060	1250

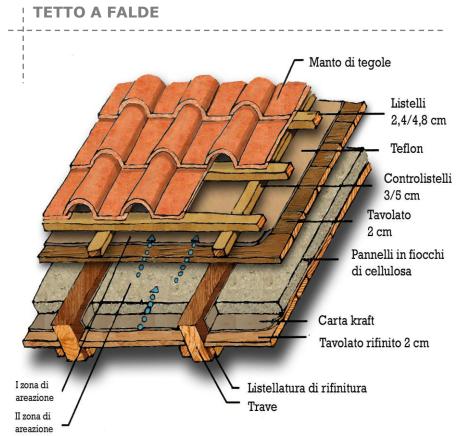
Questi valori devono essere modificati secondo la EN 1995-1-1 in base alla classe di servizio e alla durata di applicazione del carico (**kmod, kdef**).

COMPORTAMENTO AL FUOCO

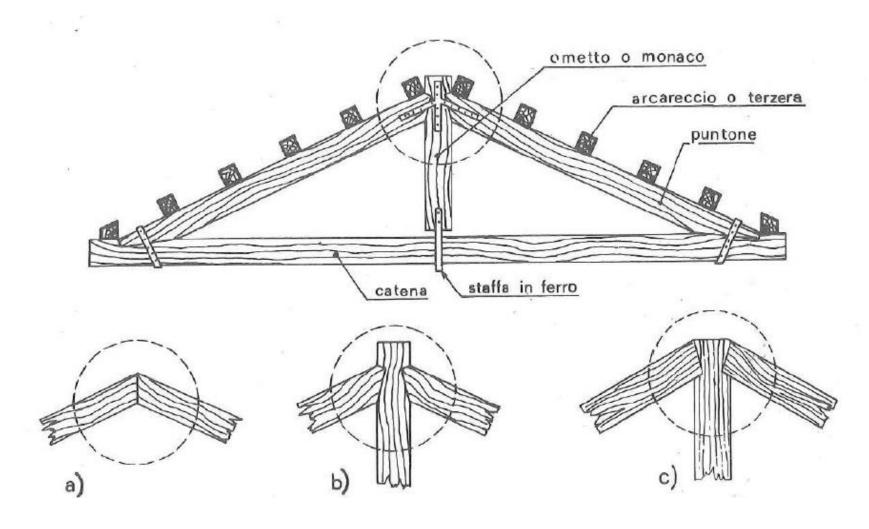
In conformità alla certificazione del produttore e in conformità a UNI EN 1995-1-2 si considerano i seguenti valori di resistenza al fuoco:

	Legno	Legno	Legno	
	Conifere e faggio	Latifoglie	Latifoglie	
	$\rho_k \ge 290 \text{ kg/m}^3$	$\rho_k \ge 290 \text{ kg/m}^3$	$\rho_k \ge 450 \text{ kg/m}^3$	
Velocità di carbonizzazione ß ₀	0,65 mm/min	0,65 mm/min	0,50 mm/min	
Velocità di carbonizzazione ß _n	0,80 mm/min	0,70 mm/min	0,55 mm/min	

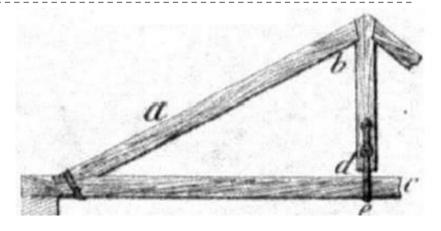

MODULO DI ELASTICITÀ E


Il valore del modulo di elasticità E è influenzato dall'umidità.

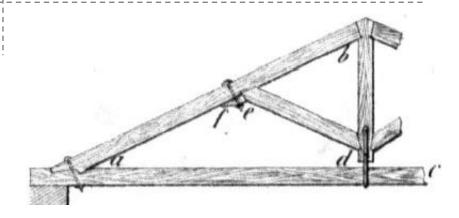
In genere varia da legno a legno da un minimo di 7500 ad un massimo di 15000 N/mm².


ORIZZONTAMENTI E COPERTURE

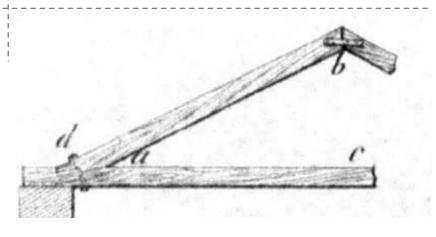
SOLAIO PIANO

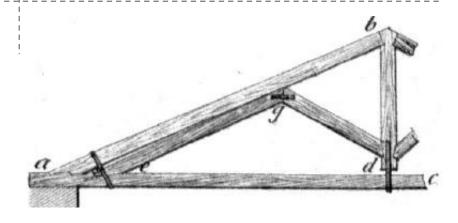


CAPRIATE

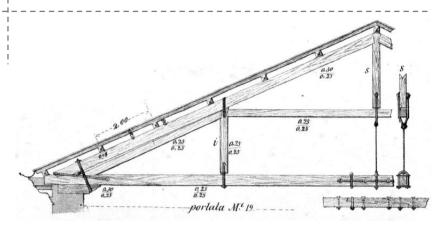


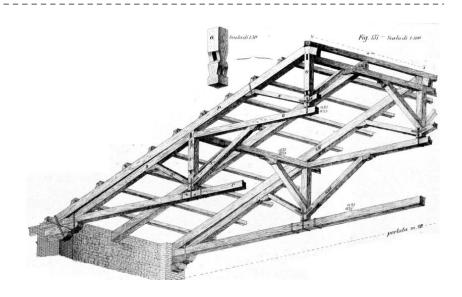
CAPRIATE

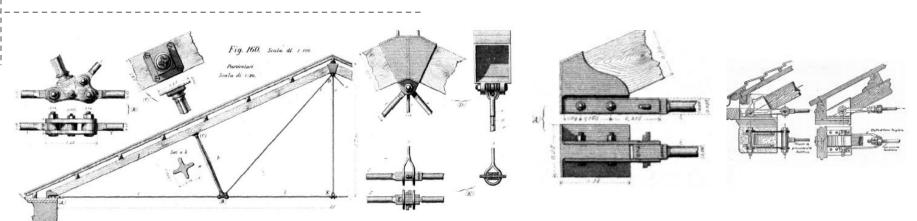

CAPRIATA SEMPLICE CON MONACO


CAPRIATA CON SAETTE

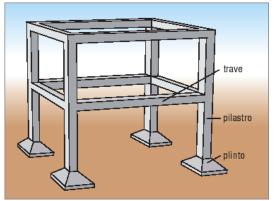
CAPRIATA SEMPLICE SENZA MONACO

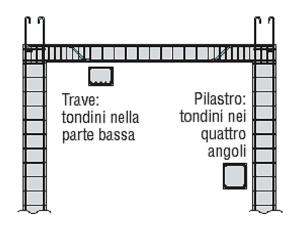



CAPRIATA CON SOTTOPUNTONI

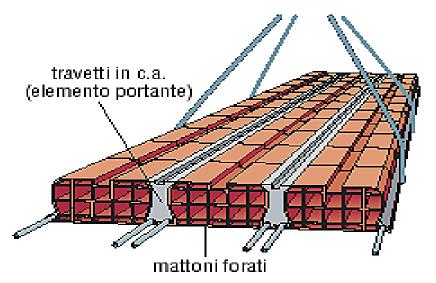

CAPRIATE

CAPRIATA PALLADIANA




CAPRIATA POLONCEAU

Struttura portante in cemento armato



Pilastro in calcestruzzo armato: è un parallelepipedo di calcestruzzo con tondini di ferro ai quattro lati e nei punti intermedi.

Ossatura elementare in cemento armato: la forma più semplice è formata da 4 travi sopra, 4 travi sotto e 4 pilastri agli angoli, con i plinti ai piedi dei pilastri. Ogni faccia della gabbia è un telaio.

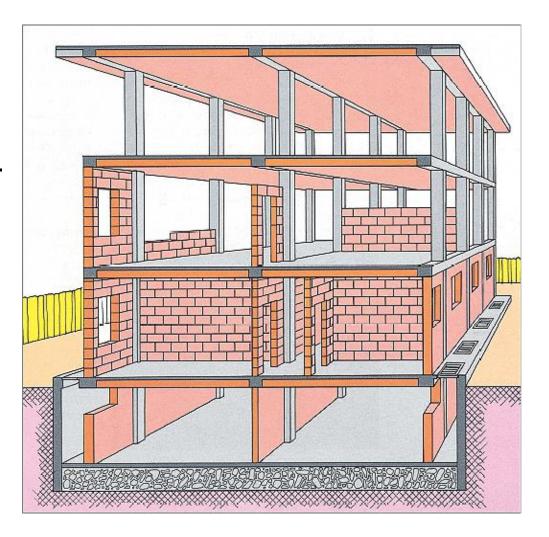
Telaio: nelle barre di calcestruzzo "armate" il calcestruzzo resiste bene alla *compressione* e il ferro alla *trazione*; quindi nei pilastri i ferri sono disposti ai quattro angoli perché la trazione si può manifestare su un qualsiasi lato, mentre nella trave i ferri sono nella parte bassa dove si manifesta lo sforzo di trazione.

Strutture appoggiate in laterizio

è formato da travetti in calcestruzzo armato che sostengono le file di mattoni forati.

Muri di tamponamento:

sono le strutture in mattoni forati che chiudono le parti esterne della gabbia e poggiano su una trave o sul solaio.


Costruzione di un edificio in c.a

Chiusure verticali:

vengono alzati i muri di tamponamento e i muri divisori, lasciando le aperture per finestre e porte.

Impianti e rifiniture:

l'idraulico posa l'impianto dell'acqua, del gas e di riscaldamento, l'elettricista l'impianto elettrico, del telefono e della TV. Poi le ditte specializzate si occupano degli intonaci, dei pavimenti e degli infissi.

