Capitolo 1. Richiami di teoria elementare

1.1 Cenni di teoria degli insiemi

Il concetto di "insieme" è un concetto primitivo, cioè uno di quei presupposti o assiomi che in matematica costituiscono i fondamenti e dei quali non è data alcuna definizione. Intuitivamente si può pensare ad un insieme come agli elementi che lo costituiscono, accomunati da una stessa natura o proprietà. Indicheremo gli insiemi con le lettere in maiuscolo (A,B,C,X,Y...) mentre gli elementi di esso verranno indicati in minuscolo (a,b,c,x,y...). Per indicare che un elemento appartiene ad un insieme, scriveremo $a \in A$; per indicare che un elemento non appartiene ad un insieme scriveremo $a \notin A$.

DEFINIZIONE. L'insieme privo di elementi è detto insieme vuoto e lo indichiamo con il simbolo Φ .

Dati due insiemi A e B se gli elementi di A appartengono anche all'insieme B $(\forall := per \ ogni \ x \in A \Rightarrow x \in B)$ scriveremo che :

```
A \subseteq B (A è contenuto in B) oppure B \supseteq A (B contiene A).
```

DEFINIZIONE. A si dice sottoinsieme proprio di B se $A \subseteq B$ ed esiste almeno un elemento di B che non appartiene ad A (\exists (:= esiste) $x \in B$, | (:= tale che) $x \notin A$); in tal caso indicheremo $A \subseteq B$.

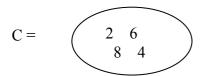
Se accade contemporaneamente che $A \subseteq B$ e $B \subseteq A$ allora A = B cioè i due insiemi sono uguali. Se A e B non sono uguali scriveremo $A \ne B$ (A diverso da B).

Si noti che ogni insieme A ha come sottoinsiemi A stesso e Φ che vengono chiamati sottoinsiemi banali. Un insieme può essere rappresentato o per elencazione (elencando esplicitamente i suoi elementi) o per proprietà (enunciando la proprietà che i suoi elementi verificano) o tramite i diagrammi di Eulero-Venn.

```
ESEMPIO
```

$$A = \{2,4,6,8\}$$

B = {tutti i numeri interi pari compresi fra 2 ed 8}



Si noti che se un insieme è costituito da un numero finito di elementi lo si può indicare nei tre modi possibili; se invece è costituito da un numero infinito di elementi è conveniente indicarlo per proprietà o tramite diagramma.

1.1.1 Operazioni tra insiemi

DEFINIZIONE. Dati due insiemi A e B si definisce unione tra A e B ($A \cup B$) l'insieme costituito da tutti gli elementi di A e da quelli di B presi una sola volta se eventualmente sono ripetuti:

$$A \cup B = \{ x \in A \text{ e/o } x \in B \}.$$

DEFINIZIONE. Dati due insiemi A e B si definisce intersezione tra A e B ($A \cap B$) l'insieme costituito dagli elementi che contemporaneamente stanno in A ed in B:

$$A \cap B = \{x : x \in A \ ed \ x \in B\}.$$

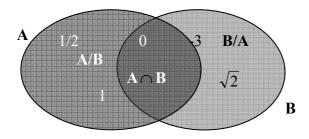
DEFINIZIONE. Dati due insiemi A e B si definisce differenza tra A e B (A/B) l'insieme costituito dagli elementi di A che non appartengono a B:

$$A/B = \{x : x \in A, x \notin B\}.$$

ESEMPIO

Siano
$$A = \{0, \frac{1}{2}, 1\}$$
 $B = \{-3, 0, \sqrt{2}\}$.
Si ha: $A \cup B = \{-3, 0, \frac{1}{2}, 1, \sqrt{2}\}$
 $A \cap B = \{0\}$
 $A / B = \{\frac{1}{2}, 1\}$
 $B / A = \{-3, \sqrt{2}\}$.

Attraverso la rappresentazione grafica dei diagrammi di Eulero-Venn, lo stesso esempio diventa:



Da questo esempio si può notare che $A = (A/B) \cup (A \cap B)$; $A \cup B = B \cup A$ mentre $A/B \neq B/A$; questo significa che le operazioni di unione ed intersezione sono operazioni commutative, mentre la differenza non lo è.

DEFINIZIONE. Dato un insieme A chiameremo insieme delle parti di A, P(A), l'insieme costituito da tutti i sottoinsiemi di A (compresi quelli banali):

$$P(A) = \{X \mid X \subseteq A\}.$$

```
ESEMPIO
```

```
Sia A = \{1, 2, 3, 4\} determinare P(A).

Intanto \Phi ed A stesso appartengono a P(A);

i sottoinsiemi formati da un solo elemento sono : \{1\}, \{2\}, \{3\}, \{4\};

i sottoinsiemi formati da due elementi sono \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\};

i sottoinsiemi formati da tre elementi sono \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}

quindi P(A) = \{\Phi, A, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{1,2,4\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}\}; notare che P(A) contiene P(A) elementi.
```

OSSERVAZIONE. In generale, se un insieme X ha r elementi allora P(X) avrà 2^r elementi.

Alcune tra le proprietà di cui godono le operazioni tra insiemi sono:

```
P1: A \cap A = A

P2: A \cap \Phi = \Phi \cap A = \Phi

P3: A \cup \Phi = \Phi \cup A = A

P4: (A \cup B) \cap C = (A \cap C) \cup (B \cap C) proprietà distributiva

P5: (A \cap B) \cup C = (A \cup C) \cap (B \cup C) proprietà associativa

P6: (A \cup B) \cup C = A \cup (B \cup C) proprietà associativa

P7: (A \cap B) \cap C = A \cap (B \cap C) " " formula di De Morgan

P9: A / (B \cap C) = (A / B) \cup (A / C) " "
```

Dimostriamo, ad esempio, la P9, che essendo una uguaglianza insiemistica va provata facendo vedere che preso un qualunque elemento appartenente al primo membro, esso appartiene anche al secondo membro e viceversa.

Sia $x \in A/(B \cap C)$; allora $x \in A$ ed $x \notin B \cap C$, ovvero $x \notin B$ oppure $x \notin C$. Da cui $x \in A$ ed $x \notin B$ implies $x \in (A/B)$; $x \in A$ ed $x \notin C$ implies $x \in (A/C)$.

In definitiva $x \in (A/B)$ oppure $x \in (A/C)$ perciò $x \in (A/B) \cup (A/C)$. Viceversa, sia $x \in (A/B) \cup (A/C)$: allora $x \in (A/B)$ oppure $x \in (A/C)$. Se $x \in (A/B)$ allora $x \in A$ ed $x \notin B$; se $x \in (A/C)$ allora $x \in A$ ma $x \notin C$.

Da ciò $x \notin (B \cap C)$ ovvero $x \in A/(B \cap C)$.

DEFINIZIONE. Si dice prodotto cartesiano di due insiemi A e B (e si denota con $A \times B$) l'insieme formato dalle coppie ordinate (a,b) con $a \in A$ e $b \in B$:

$$A \times B = \{(a,b) : a \in A, b \in B\}$$
.

1.2 Teoria dei numeri

Consideriamo adesso particolari insiemi : gli insiemi numerici.

Indichiamo con N 1'insieme dei numeri naturali

$$\mathbb{N} = \{0, 1, 2, 3, ..., n, ...\};$$

in tale insieme vengono definite le operazioni algebriche elementari dirette (somma e prodotto) e le relative operazioni inverse (differenza e divisione).

Osserviamo che le operazioni inverse non sempre sono eseguibili, infatti dati a e b appartenenti ad \mathbb{N} la loro differenza è quel numero naturale c (se esiste) tale che c+b=a.

È chiaro che se $a \le b$ allora $\not\equiv c \in \mathbb{N}$: c + b = a perché per ogni c intero, $c + b > b \ge a \implies c + b > a$.

Analogamente dati a e b interi non è detto che esista c (risultato della divisione di a per b) tale che $c \cdot b = a$, ovvero che a sia multiplo di b.

Dato che non è possibile in $\mathbb N$ effettuare tutte le operazioni di base, nel senso che il risultato non è detto che sia un numero intero, viene introdotto l'insieme dei numeri *interi relativi* $\mathbb Z$

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots \pm n, \dots\}.$$

Si guadagna così l'operazione di sottrazione, oltre le due operazioni dirette; ma ancora non è detto che il quoto di due interi relativi sia ancora dello stesso tipo.

Per tale motivo viene introdotto l'insieme Q dei *numeri razionali*, ossia delle frazioni aventi numeratore un intero relativo qualsiasi, e per denominatore un intero relativo diverso da zero

$$\mathbb{Q} = \left\{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \right\}.$$

È chiaro che $\mathbb{N} \subset \mathbb{Z}$ e $\mathbb{Z} \subset \mathbb{Q}$.

Ogni numero razionale $\frac{m}{n}$ nel sistema di numerazione decimale si può scrivere come $\pm M, c_1 c_2 ... c_r ... c_1 c_2 ... c_r = \pm M, \overline{c_1 c_2 c_r}$ dove M è un numero naturale, $c_1, c_2, ..., c_r$ sono numeri interi compresi tra 0 e 9 e la barra sopra $c_1 c_2 ... c_r$ indica la periodicità, ovvero il loro ripetersi nella numerazione decimale.

L'insieme \mathbb{Q} ci permette di eseguire tutte le operazioni algebriche di base; ricordiamo che dati a, b, c, d elementi di \mathbb{Z} con c e d non nulli si ha:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{a}{b} = \frac{c}{d} \iff ad = bc$$

$$\frac{a}{b} > \frac{c}{d} > 0 \iff ad > bc$$

Tuttavia si potrebbe provare che \mathbb{Z} $r \in \mathbb{Q}$: $r^2 = 2$, mentre vedremo che un numero che verifica la suddetta eguaglianza è la radice quadrata aritmetica di 2 ($\sqrt{2}$).

Pertanto, si definisce \mathbb{R} l'insieme dei *numeri reali*, ampliando \mathbb{Q} con quei numeri che non si possono esprimere sotto forma di frazione, come $\sqrt{2}$, π , e (*numeri irrazionali*):

$$\mathbb{R}=\mathbb{Q}\cup\left\{\sqrt{2},\pi,e,\ldots\right\}.$$

Chiameremo numero reale il seguente simbolo: $\pm M$, $c_1c_2...c_r...$ osservando che se la successione di cifre decimali dopo la virgola è periodica il numero è reale razionale, altrimenti il numero è irrazionale.

Lo zero avrà la seguente rappresentazione $0,00000\dots$; mentre il numero reale si dirà positivo o negativo se il segno che lo precede è + oppure – .

Dato a numero reale si dice opposto del numero a lo stesso numero col segno cambiato (-a). Due numeri reali a e b si dicono uguali se hanno lo stesso segno, la stessa parte intera e la stessa successione di cifre decimale, ovvero se, sempre avendo lo stesso segno uno dei due numeri è periodico di periodo 9 e l'altro si ottiene da questo sostituendo il 9 con 0 ed aumentando di una unità la cifra che precede il periodo 9, per esempio +5,319999...=+5,32.

L'uguaglianza fra numeri reali gode delle seguenti tre proprietà:

P1: $riflessiva: a = a, \forall a \in \mathbb{R}$

P2: $simmetrica: a = b \Rightarrow b = a, \forall a, b \in \mathbb{R}$

P3: $transitiva: a = b, b = c \Rightarrow a = c, \forall a, b, c \in \mathbb{R}$.

Per confrontare due numeri reali distinti non negativi diremo che a è minore di b e scriveremo a < b se la parte intera di a è minore della parte intera di b ovvero se avendo la stessa parte intera la prima cifra decimale di a è minore della corrispondente cifra decimale di b e così via. Ovviamente $a > 0 \ \forall a \ reale \ positivo$.

Se a e b sono entrambi reali negativi diremo che a è minore di b se -b < -a. Si deduce che ogni numero reale non negativo è maggiore di qualunque numero reale negativo.

Ricordiamo che la relazione di confronto introdotta in \mathbb{R} gode delle seguenti proprietà :

P1: $riflessiva: a \le a, \forall a \in \mathbb{R}$

P2: antisimmetrica: $a \le b, b \le a \Rightarrow a = b, \forall a, b \in \mathbb{R}$

P3: *transitiva*: $a \le b, b \le c \Rightarrow a \le c, \forall a, b, c \in \mathbb{R}$

P4: tricotomia: se $a \neq b \implies a < b$ oppure b < a

P5: se $a \le b \Rightarrow a + c \le b + c, \forall a, b, c \in \mathbb{R}$

P6: se $a \le b \implies \begin{cases} a \cdot c \le b \cdot c & \text{se } c \ge 0 \\ a \cdot c \ge b \cdot c & \text{se } c < 0 \end{cases}$

P7: se $a \in b$ sono concordi (discordi) $\Rightarrow a \cdot b \ge 0$ $(a \cdot b \le 0)$

P8: Assioma di completezza : siano A e B sottoinsiemi non vuoti di \mathbb{R} , tali che $a \le b \quad \forall a \in A, b \in B$. Allora esiste almeno un numero reale c tale che $a \le c \le b \quad \forall a \in A, b \in B$.

In \mathbb{R} definiamo le operazioni di somma e prodotto che godono delle seguenti proprietà:

P1: a+b=b+a; $a \cdot b = b \cdot a$ proprietà commutativa

P2: (a+b)+c=a+(b+c); $(a \cdot b) \cdot c=a \cdot (b \cdot c)$ proprietà associativa

P3: a + 0 = a ; $a \cdot 1 = a$ (esistenza dell'elemento neutro)

P4: a + (-a) = (-a) + a = 0, $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$ $(\frac{1}{a} \text{ è il reciproco di } a \neq 0)$

P5: $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ proprietà distributiva.

Le *operazioni inverse* sono così definite:

$$a-b=a+(-b) \ \forall a,b \in \mathbb{R}$$

$$a:b=a\cdot\frac{1}{b} \quad \forall a,b\in\mathbb{R},b\neq 0.$$

Osserviamo che:

1.
$$a > 0 \Rightarrow \frac{1}{a} > 0, \forall a \in \mathbb{R}, a \neq 0$$
;

2.
$$0 < a \le b \Leftrightarrow \frac{1}{a} \ge \frac{1}{b} \quad \forall a, b \in \mathbb{R}, a, b \ne 0$$
.

1.3 Valore assoluto

DEFINIZIONE. Si dice valore assoluto del numero reale a il numero non negativo così definito:

$$|a| = \begin{cases} a & \text{se } a > 0 \\ -a & \text{se } a < 0 \\ 0 & \text{se } a = 0 \end{cases}$$

Da questa definizione si hanno le seguenti proprietà :

P1: $\forall a \ge 0, \forall x \in \mathbb{R}, |x| \le a \Leftrightarrow -a \le x \le a$

P2: $\forall a, x \in \mathbb{R} \mid x \geq a \Leftrightarrow x \leq -a \text{ oppure } x \geq a$

P3: $|x \cdot y| = |x| \cdot |y| \quad \forall x, y \in \mathbb{R}$

P4: $|a \pm b| \le |a| + |b| \quad \forall a, b \in \mathbb{R}$ prima disuguaglianza triangolare

P5: $|a \pm b| \ge ||a| - |b|| \quad \forall a, b \in \mathbb{R}$ seconda disuguaglianza triangolare

P6: $\left| \frac{a}{b} \right| = \frac{|a|}{|b|} \quad \forall a, b \in \mathbb{R}, b \neq 0$

P7: $|a| < \varepsilon \ \forall \varepsilon > 0 \Rightarrow a = 0$

P8: $-|a| \le a \le |a| \quad \forall a \in \mathbb{R}$

P9: $|a|=|-a| \forall a \in \mathbb{R}$.

ESEMPI

•
$$|-2.5| = |-10| = 10 \text{ e } |-2||5| = 2.5 = 10$$

•
$$|-2 + 3| = 1 < |-2| + |3| = 5$$

•
$$|3 - (-2)| = |5| > ||3| - |-2|| = |3 - 2| = 1$$
.

1.4 Elevamento a potenza

Assegnati due numeri reali α e β , cerchiamo di dare significato al simbolo α^{β} .

Procediamo per passi:

- 1. sia $\beta = n$ numero naturale; definiamo $\alpha^n = \underbrace{\alpha \cdot \alpha \cdot ... \alpha}_{n \text{ volte}}$ ed $\alpha^0 = 1 \ (\alpha \neq 0)$.
- 2. sia $\beta = m$ numero intero relativo, con m non negativo ed $\alpha \neq 0$, definiamo $\alpha^m = \frac{1}{\alpha^{-m}}$.
- 3. sia $\beta = \frac{m}{n}$ numero razionale; per definire la potenza $\alpha^{\frac{m}{n}}$ introduciamo la *radice n-esima di* un numero reale.

1.4.1 Radice n-esima di un numero reale

Sia
$$a \in \mathbb{R}$$
, $a > 0$, $n \in \mathbb{N}$, $n > 1$.

DEFINIZIONE. Si chiama radice n-esima aritmetica di $a(\sqrt[n]{a})$ quel unico numero reale positivo b la cui potenza n-esima da $a:b^n=a$.

Si prova che un siffatto numero b esiste. Consideriamo adesso l'equazione $x^n = a$ con $a \in \mathbb{R}, n \in \mathbb{N}$.

Tale equazione ammette o meno soluzioni nell'incognita reale x in funzione di a ed n, infatti:

- 1. se a > 0, n intero pari n > 1, l'equazione $x^n = a$ ammette in \mathbb{R} , come uniche soluzioni, la radice n-esima aritmetica di a ($b = \sqrt[n]{a}$) e l'opposto della radice n-esima aritmetica di a ($b = -\sqrt[n]{a}$);
- 2. se a > 0, n intero dispari n > 1, l'equazione $x^n = a$ ammette in \mathbb{R} una ed una sola soluzione data dalla radice n-esima aritmetica di a ($b = \sqrt[n]{a}$);
- 3. se a = 0, n intero n > 1, l'equazione $x^n = 0$ ammette in \mathbb{R} una ed una sola soluzione che è lo zero;
- 4. se a < 0, n intero dispari n > 1, l'equazione $x^n = a$ ammette in \mathbb{R} una ed una sola soluzione (negativa) data dall'opposto della radice n-esima aritmetica di -a ($b=-\sqrt[n]{-a}$);
- 5. se a < 0, n intero pari n > 1, in tal caso l'equazione $x^n = a$ non ammette soluzioni in \mathbb{R} .

DEFINIZIONE: si dice radice n-esima di un numero reale ogni soluzione, se esiste, dell'equazione $x^n = a$, $con \ a \in \mathbb{R}, n \in \mathbb{N}, n > 1$.

1.4.2 Proprietà della radice n-esima

P1: $(\sqrt[n]{a})^n = a, \forall a \ge 0 \text{ ed } n \text{ intero } n > 1, \text{ e } \forall a < 0 \text{ ed } n \text{ intero dispari } > 1.$

P2: se
$$a > 0 \Rightarrow \sqrt[n]{a} > 0$$

se $a = 0 \Rightarrow \sqrt[n]{a} = 0$
se $a < 0$, $n \text{ dispari} \Rightarrow \sqrt[n]{a} < 0$

P3:
$$\sqrt[n]{a} = -\sqrt[n]{-a}$$
 con *n* dispari.

Si ha che $\sqrt{x^2} = |x|$, pertanto se $\alpha \ge 0$ definiamo $\alpha^{\frac{m}{n}} = (\sqrt[n]{\alpha})^m = (\sqrt[n]{\alpha}^m)$.

Osserviamo che $\alpha^{\frac{m}{n}} \ge 0 \ \forall \alpha \in \mathbb{R}_0^+ \ ed \ \alpha^{\frac{1}{n}} = \sqrt[n]{\alpha}$.

Utilizzando l'assioma di completezza è possibile estendere la definizione di $\alpha^{\beta} \operatorname{con} \beta \in \mathbb{R} \operatorname{ed} \alpha > 0$.

Elenchiamo alcune proprietà delle potenze:

P1: $\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta+\gamma}$

P2: $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$

P3: $\alpha^{\beta} > 0$

P4: $\alpha > 1$, $\beta < \gamma \Leftrightarrow \alpha^{\beta} < \alpha^{\gamma}$

P5: $0 < \alpha < 1$ $\beta < \gamma \iff \alpha^{\beta} > \alpha^{\gamma}$

P6:
$$\left(\frac{\alpha}{\beta}\right)^{\gamma} = \frac{\alpha^{\gamma}}{\beta^{\gamma}}$$

P7:
$$(\alpha \cdot \beta)^{\gamma} = \alpha^{\gamma} \cdot \beta^{\gamma}$$

P8: $se \quad 0 < \alpha < \beta \implies \begin{cases} \alpha^{\gamma} < \beta^{\gamma} & se \ \gamma > 0 \\ \alpha^{\gamma} = 1 & se \ \gamma = 0 \\ \alpha^{\gamma} > \beta^{\gamma} & se \ \gamma < 0 \end{cases}$

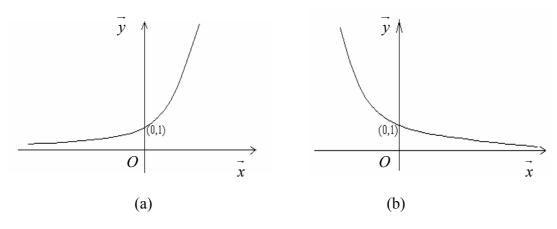


Figura 1.1 Grafico della funzione esponenziale a^x : (a) caso a>1, (b) caso 0<a<1.

ESEMPI

•
$$(a^3)^4 = a^{12}$$
 ; $[(x^3)^5]^7 = x^{105}$

•
$$c^2 \cdot c^5 \cdot c^3 = c^{10}$$
 ; $\frac{m^{12}}{m^7} = m^5$; $\left[(s)^3 \right]^7 = s^{21}$

•
$$k^0 = 1$$
 ; $b^1 = b$; $z^{-4} = \frac{1}{z^4}$

•
$$(3 \cdot a \cdot b \cdot x)^7 = 3^7 \cdot a^7 \cdot b^7 \cdot x^7$$
; $\left(\frac{g}{h}\right)^3 = \frac{g^3}{h^3}$.

1.5 Logaritmo

DEFINIZIONE. Dati a e b numeri reali a, b > 0, $a \ne 1$, si definisce logaritmo di b in base a, e lo si indica con la scrittura $\log_a b$, l'unico numero reale soluzione dell'equazione $a^x = b$.

Si può provare che un siffatto numero esiste e, ovviamente, risulta $a^{(\log_a b)} = b$.

Elenchiamo alcune proprietà del logaritmo:

P1: $\log_a a = 1$; $\log_a 1 = 0$

P2: $p = \log_a(a)^p$

P3: $\log_a(b \cdot c) = \log_a b + \log_a c$

P4: $\log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c$

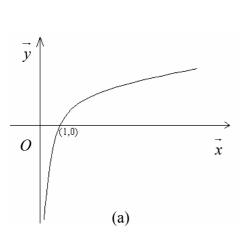
P5: $\log_b c = \frac{\log_a c}{\log_a b}$ (formula di cambiamento di base)

P6: a > 1, $b < c \Leftrightarrow \log_a b < \log_a c$

P7: 0 < a < 1, $b < c \Leftrightarrow \log_a b > \log_a c$.

Se a = e il logaritmo si dice naturale o neperiano e si indica con $\log a$ oppure $\lg a$; invece se a = 10 i logaritmi si dicono decimali e si indicano con $\log a$.

Nell'espressione $\log_a b = \pm M, c_1 c_2 \dots$ la quantità $\pm M$ si dice la *caratteristica* del logaritmo mentre la quantità $c_1 c_2 \dots$ si chiama la *mantissa* del logaritmo.



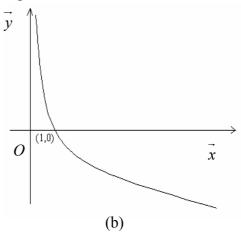


Figura 1.2 Grafico della funzione logaritmica $\log_a x$: (a) caso a>1, (b) caso 0< a<1.

ESEMPI

- $\log_2 8 = 3$ perchè $2^3 = 8$; $\log_5 25 = 2$ perchè $5^2 = 25$;
- $\log_{10} 10000 = 4$ perchè $10^4 = 10000$; $\log_{\frac{1}{2}} \frac{1}{4} = 2$ perchè $\left(\frac{1}{2}\right)^2 = \frac{1}{4}$;
- $\log_{\frac{2}{5}} \frac{625}{16} = -4 \text{ perchè } \left(\frac{2}{5}\right)^{-4} = \frac{625}{16}$; $\log_{\frac{1}{2}} 8 = -3 \text{ perchè } \left(\frac{1}{2}\right)^{-3} = 8$;

- $\log_2 4 \cdot 16 \cdot 128 = \log_2 4 + \log_2 16 + \log_2 128$; $\log_3 \frac{81}{243} = \log_3 81 \log_3 243$
- $\log_2 16^5 = 5 \cdot \log_2 16$; $\log_3 \sqrt[3]{9} = \frac{1}{3} \cdot \log_3 9$.

1.6 Cenni di trigonometria; misura in radianti di un angolo α ; sin α ; cos α ; tg α

Sia α un angolo del piano con origine in O:

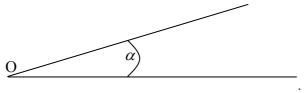


Figura 1.3

Consideriamo due circonferenze centrate in O di raggio rispettivamente r ed R (cfr. Figura 1.4) e, indichiamo con l e L, rispettivamente le lunghezze degli archi intercettati dall'angolo α su di esse:

Risulta:

$$\frac{l}{r} = \frac{L}{R}$$
.

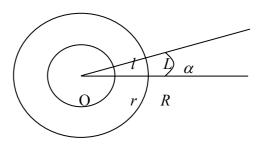


Figura 1.4

Tale numero, che non dipende dalla circonferenza centrata in O, si chiama la misura in radianti dell'angolo α . Pertanto un angolo avrà misura di 1 radiante se la lunghezza dell'arco di circonferenza intercettato è uguale al raggio della stessa circonferenza.

La misura in radianti dell'angolo giro è $2\pi r/r = 2\pi$ da cui deduciamo che l'angolo piatto è π radianti, l'angolo retto è π /2 radianti e più in generale la formula che ci permetterà di passare dalla misura in radianti dell'angolo α (α _r) alla misura in gradi (α _g) e viceversa:

$$\frac{\alpha_g}{360^0} = \frac{\alpha_r}{2\pi}.$$

Dalla precedente proporzione segue

Tabella 1.1

misura dell'angolo in gradi sessagesimali	misura dell'angolo in radianti
360°	2π
180°	π
90°	π/2
60°	$\pi/3$
45°	π/4
30°	π/6
270°	$3\pi/2$

Consideriamo ora, un sistema di riferimento cartesiano (cfr il Capitolo 3) e riportiamo l'angolo α in modo che la sua origine coincida con quella del sistema di riferimento e una delle due semirette che lo generano giaccia sull'asse \vec{x} (cfr. Figura 1.5). Si conviene che la misura di α sia positiva se la semiretta che genera l'angolo e giace sull'asse \vec{x} ruota in verso antiorario per sovrapporsi all'altra semiretta (in caso contrario la misura di α sarà negativa).

Sia Γ la circonferenza avente centro nell'origine del sistema di riferimento e raggio unitario (circonferenza trigonometrica):

$$\Gamma = \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 1 \right\}.$$

Diciamo B il punto sulla circonferenza intersezione con la semiretta libera che genera l'angolo α . Ebbene, l'ordinata (\overline{BH}) e l'ascissa (\overline{OH}) del punto B si chiamano rispettivamente seno di α $(\sin\alpha)$ e coseno di α $(\cos\alpha)$.

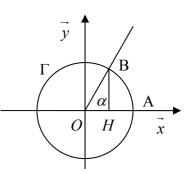


Figura 1.5

Evidentemente:

$$-1 \le \sin \alpha \le 1$$
, $-1 \le \cos \alpha \le 1$, $\forall \alpha \in \mathbb{R}$, e si ha:

$$\sin(\alpha + 2k\pi) = \sin\alpha$$
; $\cos(\alpha + 2k\pi) = \cos\alpha \quad \forall k \in \mathbb{Z}, \forall \alpha \in \mathbb{R}$.

Applicando il Teorema di Pitagora al triangolo rettangolo di cateti BH, OH, ed ipotenusa uguale ad uno, si trova la relazione fondamentale:

$$\sin^2 \alpha + \cos^2 \alpha = 1, \ \forall \alpha \in \mathbb{R}$$
.

Definiamo tangente dell'angolo α (tg α) il seguente rapporto :

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}$$
 che ovviamente ha senso se
$$\cos\alpha \neq 0 \Leftrightarrow \alpha \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}.$$

Geometricamente la tangente di α rappresenta l'ordinata del punto T intersezione tra la retta tangente al trigonometrico in A e la semiretta libera che genera α ($tg \alpha \overline{AT}$)(cfr. Figura 1.6).

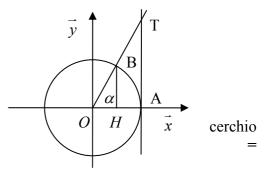


Figura 1.6

Riportiamo qui di seguito una tabella con i valori di $\sin \alpha$, $\cos \alpha$ e $\tan \alpha$ per alcuni angoli di uso più frequente:

Tabella 1.2

rabena 1.2			
α	$\sin lpha$	$\cos \alpha$	$\operatorname{tg}lpha$
$15^{\circ} = \pi/12$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$2-\sqrt{3}$
$18^\circ = \pi/10$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\sqrt{\frac{5-2\sqrt{5}}{5}}$
$30^{\circ} = \pi/6$	1/2		$\sqrt{3}/3$

		$\sqrt{3}/2$	
$45^{\circ} = \pi/4$	$\sqrt{2}/2$	$\sqrt{2}$ /2	1
$60^{\circ} = \pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
$90^{\circ} = \pi/2$	1	0	non esiste
$180^{\circ} = \pi$	0	-1	0
$270^{\circ} = 3/2\pi$	-1	0	non esiste
$0^{\circ} = 360^{\circ} = 2\pi$	0	1	0

Ricordiamo, inoltre:

• formule di addizione e sottrazione:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \alpha$$

$$cos(\alpha \pm \beta) = cos \alpha cos \beta \mp sin \alpha sin \beta$$
;

• formule di bisezione:

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$
, $\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$

$$tg^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$
;

• formule di duplicazione :

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$
, $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}.$$

• formule parametriche:

$$\sin \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}} , \quad \cos \alpha = \frac{1 - \operatorname{tg}^2 \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}} .$$

I grafici delle funzioni trigonometriche sono i seguenti:

• $y = \sin x$ è una funzione periodica di periodo 2π definita per ogni $x \in \mathbb{R}$, il codominio è [-1,1]. Il grafico interseca l'asse x nei punti della forma $k\pi$, con $k \in \mathbb{Z}$.



Figura 1.7 Grafico di sin x.

• $y = \cos x$ è una funzione periodica di periodo 2π definita per ogni $x \in \mathbb{R}$, il codominio è [-1,1]. Il grafico interseca l'asse x nei punti della forma $\frac{\pi}{2} + k\pi$, $\cos k \in \mathbb{Z}$.

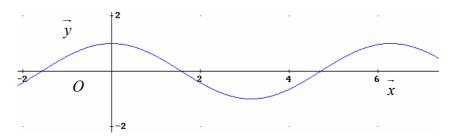


Figura 1.8 Grafico di cos x.

• $y = \operatorname{tg} x$, definita per $x \neq \frac{\pi}{2} + k\pi$ e codominio \mathbb{R} , è una funzione periodica di periodo π . Il suo grafico interseca l'asse x nei punti della forma $k\pi$, con $k \in \mathbb{Z}$.

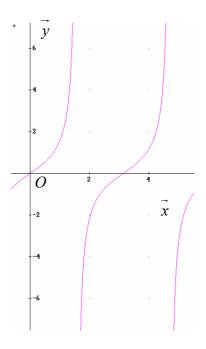


Figura 1.9 Grafico di tg x.

1.7 Polinomi, equazioni e disequazioni algebriche

DEFINIZIONE. Si chiama polinomio algebrico di grado (o ordine) n una combinazione lineare di potenze intere della variabile x del tipo :

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, \ a_i \in \mathbb{R} \ \forall i = 1, \dots, n, a_n \neq 0.$$

Osserviamo che il grado del polinomio (deg p(x)) è la massima potenza con cui compare la variabile x, ad esempio

$$p(x) = 2x^3 - x^2 + 3x - 5$$

è un polinomio di ordine 3 (deg p(x)=3). Se $p(x)=a_0$ il suo grado è zero.

Si chiama valore del polinomio per $x = \alpha$ e lo si indica con $p(\alpha)$ l'espressione numerica

$$p(\alpha) = a_0 + a_1 \alpha + a_2 \alpha^2 + \dots + a_n \alpha^n$$
.

Se $p(\alpha) = 0$, α si chiama radice del polinomio.

Assegnato un polinomio algebrico p(x) di grado n si chiama equazione algebrica associata al polinomio, e la si indica con p(x)=0, il problema della ricerca delle radici del polinomio.

Osserviamo che il numero delle radici dell'equazione algebrica è uguale all'ordine del polinomio contando le radici, anche se complesse e molteplici (*Teorema fondamentale dell'algebra*).

Teorema 1.1 (I⁰ Principio d'identità dei polinomi) *Due polinomi* p(x) e q(x) sono uguali se hanno lo stesso ordine, ed i coefficienti corrispondenti uguali.

1.7.1 Divisione tra polinomi

Sussiste il seguente

Teorema 1.2 Siano A(x) e B(x) due polinomi con $deg(A(x)) \ge deg(B(x))$. Allora esiste univocamente determinata la coppia di polinomi Q(x) (quoziente) ed R(x) (resto) tali che

$$A(x) = B(x) \cdot Q(x) + R(x) \quad con \quad \deg(R(x)) < \deg(B(x)).$$

Osserviamo che $x = \alpha$ è radice di p(x) se e solo se p(x) è divisibile per $(x-\alpha)$ (cioè il resto della divisione deve valere zero).

ESEMPIO

da cui otteniamo: $Q(x) = \frac{x^2}{2} - \frac{x}{4}$ ed $R(x) = -\frac{x}{4} + 3$.

Lasciamo al lettore la verifica che: $(x^3 - x^2 + 3) = (2x - 1)\left(\frac{x^2}{2} - \frac{x}{4}\right) + \left(-\frac{x}{4} + 3\right)$.

Osserviamo infine che note α_1 , α_2 , α_3 ,..... α_n le n radici di p(x)=0 (eventualmente non tutte distinte e non tutte reali) il polinomio ammette l'unica decomposizione

$$p(x) = a_n \cdot (x - \alpha_1) \cdot (x - \alpha_2) \cdot \dots \cdot (x - \alpha_n).$$

ESEMPIO

Sia $p(x) = x^2 - 1$. Esso ammette come radici $x = \pm 1$ e quindi si decompone in (x - 1)(x + 1).

1.7.2 Equazione algebrica di primo ordine

Si definisce equazione algebrica di primo ordine l'equazione :

$$ax + b = 0$$
 con $a, b \in \mathbb{R}, a \neq 0$.

Utilizzando le proprietà dei numeri reali tale equazione ammette l'unica soluzione $x = -\frac{b}{a}$.

Infatti: da ax + b = 0 aggiungendo ad ambo i membri –b risulta ax = -b da cui dividendo entrambi i membri per $a \ne 0$ si ottiene $x = -\frac{b}{a}$. D'altra parte è facile verificare che $x = -\frac{b}{a}$ soddisfa la nostra equazione.

ESEMPIO

Risolvere l'equazione -3x + 5 = 0.

Aggiungendo ad ambo i membri -5 e dividendo per -3 si ottiene la soluzione $x = \frac{5}{3}$.

1.7.3 Equazione algebrica di secondo ordine

Si definisce equazione algebrica del secondo ordine l'equazione:

$$ax^2 + bx + c = 0$$
 con $a, b, c \in \mathbb{R}, a \neq 0$.

Si chiama discriminante dell'equazione (e lo si indica con il simbolo Δ) il numero $\Delta=b^2-4ac$.

La risoluzione dell'equazione è legata al segno di Δ . Si prova che :

• Se Δ >0 l'equazione ammette due radici reali e distinte fornite dalla seguente formula:

$$x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \quad \text{e quindi} \quad ax^2 + bx + c = a \cdot (x - x_1) \cdot (x - x_2).$$

• Se $\Delta = 0$ l'equazione ammette due radici reali e coincidenti date da

$$x_1 = x_2 = -\frac{b}{2a}$$
 ed $ax^2 + bx + c = a \cdot \left(x + \frac{b}{2a}\right)^2$.

• Se Δ <0 l'equazione non ammette radici reali (ma ovviamente ne ammetterà due complesse coniugate).

OSSERVAZIONE. Assegnato il polinomio algebrico p(x), il problema della risoluzione di $p(x) \neq 0$ si affronta determinando le soluzioni di p(x)=0 ed escludendo tali valori.

ESEMPIO

Per risolvere $x^2 - 3x + 2 \neq 0$, basterà risolvere $x^2 - 3x + 2 = 0$. Tale equazione ha come soluzioni

$$x = \frac{3 \pm \sqrt{9 - 8}}{2} = \frac{3 \pm 1}{2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

per cui $x \ne 1$, $x \ne 2$ sono le soluzioni del nostro problema.

1.7.4 Sistemi di equazioni

Il problema della risoluzione di due o più equazioni, ovvero la ricerca dei valori da dare alla variabile x per soddisfare contemporaneamente le equazioni assegnate $p_1(x) = 0, \ldots, p_r(x) = 0$ si chiama *sistema* e lo si indica nella maniera seguente:

$$\begin{cases} p_1(x) = 0 \\ \vdots \\ p_r(x) = 0 \end{cases}$$

ESEMPIO

Si consideri il sistema:

$$\begin{cases} x^2 - 1 = 0 \\ x - 1 = 0 \end{cases}$$

la prima equazione ha come soluzioni $x = \pm 1$ mentre la seconda equazione ha soluzione x = 1. Quindi il sistema ammette come unica soluzione x = 1.

OSSERVAZIONE. Un sistema potrebbe non avere soluzioni, quando le singole equazioni che lo compongono non hanno soluzioni o non hanno soluzioni a comune. Un sistema, infine, potrebbe presentarsi nel seguente modo:

$$\begin{cases} p(x) = 0 \\ \dots \\ q(x) \neq 0 \end{cases}$$

1.7.5 Equazioni fratte

Assegnati i polinomi p(x) e q(x), si chiama equazione fratta l'equazione $\frac{p(x)}{q(x)} = 0$.

Essa è equivalente al sistema:
$$\begin{cases} p(x) = 0 \\ q(x) \neq 0 \end{cases}$$

ESEMPIO

$$\frac{x^2 - 3x + 2}{x - 1} = 0 \quad \Leftrightarrow \quad \begin{cases} x^2 - 3x + 2 = 0 \\ x - 1 \neq 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} x = 1, \quad x = 2 \\ x \neq 1 \end{cases}$$

quindi l'unica soluzione dell'equazione è x = 2.

1.7.6 Disequazioni algebriche

Sia p(x) un polinomio di ordine n. Si chiama disequazione algebrica il problema della ricerca dei valori di x per cui è soddisfatta una delle seguenti relazioni:

$$p(x) > 0$$
; $p(x) \ge 0$; $p(x) < 0$; $p(x) \le 0$.

Osserviamo che sarà sufficiente saper risolvere ad esempio la disequazione p(x) > 0 (ed è questo il caso in cui, in seguito, analizzeremo la risoluzione dei vari tipi di disequazione).

Infatti:

$$p(x) < 0 \Leftrightarrow -p(x) > 0$$
; $p(x) \ge 0 \Leftrightarrow p(x) > 0$ e $p(x) = 0$.

1.7.7 Disequazione algebrica di primo ordine

La forma generale di una disequazione algebrica di primo ordine è del tipo:

$$ax + b > 0$$
, $a \neq 0$.

Dalle proprietà dei numeri reali
$$ax + b > 0 \Leftrightarrow ax > -b \Leftrightarrow \begin{cases} x > -\frac{b}{a} & se \ a > 0 \\ x < -\frac{b}{a} & se \ a < 0 \end{cases}$$

Risulta evidente che, al contrario dell'equazione di primo ordine che ammette una sola soluzione, le soluzioni della nostra disequazione sono infinite.

1.7.8 Disequazione algebrica di secondo ordine

La forma generale di una disequazione algebrica di secondo ordine è del tipo:

$$ax^{2} + bx + c > 0$$
, $a \neq 0$.

Detto $\Delta = b^2 - 4ac$ il discriminante dell'equazione associata alla disequazione considerata, si possono presentare tre casi:

• Se $\Delta > 0$ l'equazione associata ammette due radici reali e distinte: $x_1 < x_2$. In tal caso le soluzioni della disequazione si ottengono seguendo la regola: il segno del trinomio $ax^2 + bx + c$ è uguale al segno del coefficiente a per le x tali che $x < x_1$, $x > x_2$; invece il segno del trinomio è opposto al segno di a per le x tali che $x_1 < x < x_2$.

ESEMPIO

Risolvere la seguente disequazione: $x^2 + x - 2 > 0$.

Risulta
$$\Delta = 1 + 8 = 9 > 0$$
 per cui $x_{1,2} = \frac{-1 \pm \sqrt{9}}{2} = \begin{cases} x_1 = \frac{-1 - 3}{2} = -2\\ x_2 = \frac{-1 + 3}{2} = 1 \end{cases}$ sono le soluzioni

dell'equazione associata; dunque essendo il coefficiente della *x* di secondo grado positivo come il segno del trinomio, le soluzioni della disequazione sono:

$$x < -2, \quad x > 1$$
.

• Se $\Delta = 0$ l'equazione associata ammette come unica radice $x = -\frac{b}{2a}$.

In tal caso il segno del trinomio è lo stesso del segno di a, $\forall x \neq -\frac{b}{2a}$.

ESEMPI

a. Risolvere la seguente disequazione: $x^2 - 2x + 1 > 0$. Risulta $\Delta = 4 - 4 = 0$ per cui x = 1 è la soluzione dell'equazione associat

Risulta $\Delta = 4 - 4 = 0$ per cui x = 1 è la soluzione dell'equazione associata; dunque le soluzioni della disequazione sono $\forall x \in R$, $x \ne 1$.

- b. Risolvere la seguente disequazione: $-x^2 + 4x 4 > 0$. Risulta $\Delta = 16 - 16 = 0$ per cui x = 2 è la soluzione dell'equazione associata; dunque la disequazione non ammette soluzioni.
 - Se Δ < 0 l'equazione associata alla disequazione non ammette soluzioni reali, quindi il segno del trinomio è uguale al segno di a.

ESEMPI

- a. Risolvere la seguente disequazione: $x^2 + x + 1 > 0$. Risulta $\Delta = 1 - 4 = -3 < 0$; dunque le soluzioni della disequazione sono $\forall x \in \mathbb{R}$.
- b. Risolvere la seguente disequazione: $-x^2 + x 1 > 0$. Risulta $\Delta = 1 - 4 = -3 < 0$; dunque la disequazione non ammette soluzioni.

1.7.9 Sistemi di disequazioni

Si chiama *sistema di disequazioni* il problema della ricerca dei valori di *x* per cui risultino contemporaneamente soddisfatte un numero finito di disequazioni assegnate:

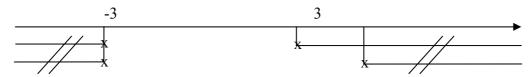
$$\begin{cases} p_1(x) < 0 \\ p_2(x) \ge 0 \\ \vdots \\ p_r(x) > 0 \end{cases}$$

ESEMPI

a. Risolvere il sistema:

$$\begin{cases} x^2 - 9 > 0 \\ x^2 - 7x + 12 > 0 \end{cases} \Leftrightarrow \begin{cases} (x - 3)(x + 3) > 0 \\ \Delta = 49 - 48 = 1 \end{cases} \Leftrightarrow \begin{cases} x_1 = -3, & x_2 = 3 \\ x_{1,2} = \frac{7 \pm 1}{2} = \begin{pmatrix} 3 \iff x < -3, & x > 3 \\ x < 3, & x > 4 \end{cases}.$$

Graficamente si ha:



quindi, il sistema dato ha come soluzioni: x<-3, x>4.

b. Risolvere la disequazione $|x+1| + x^2 \le 4$.

Questa disequazione è equivalente all'unione dei due seguenti sistemi:

$$\begin{cases} x+1 \ge 0 \\ x+1+x^2 \le 4 \end{cases} \quad \bigcup \quad \begin{cases} x+1 < 0 \\ -x-1+x^2 \le 4 \end{cases}$$

che hanno come soluzioni

$$-1 \le x \le \frac{-1 + \sqrt{13}}{2}$$
 \bigcup $\frac{1 - \sqrt{21}}{2} \le x \le -1$

per cui le soluzioni della disequazione iniziale sono

$$\frac{1 - \sqrt{21}}{2} \le x \le \frac{-1 + \sqrt{13}}{2} \,.$$

c. Risolvere la seguente disequazione : $\frac{x^2 - 9}{x^2 - 7x + 12} > 0$.

La disequazione è equivalente all'unione dei due sistemi:

$$\begin{cases} x^2 - 9 > 0 \\ x^2 - 7x + 12 > 0 \end{cases} \cup \begin{cases} x^2 - 9 < 0 \\ x^2 - 7x + 12 < 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x < -3, & x > 3 \\ x < 3, & x > 4 \end{cases} \cup \begin{cases} -3 < x < 3 \\ 3 < x < 4 \end{cases}$$

$$\Leftrightarrow (x < -3, x > 4) \cup (\Phi),$$

per cui le soluzioni della disequazione iniziale sono: x < -3, x > 4.

1.7.10 Equazioni e disequazioni irrazionali

Si definisce equazione irrazionale un' equazione del tipo

$$\sqrt[n]{A(x)} = B(x)$$

dove $n \in \mathbb{N}$, A(x) e B(x) sono due polinomi nella variabile x. La risoluzione di tale equazione dipende dall'indice n.

Precisamente l'equazione considerata è equivalente (a meno di verifica finale) a:

• se *n* è pari al sistema:
$$\begin{cases} A(x) = [B(x)]^n \\ A(x) \ge 0 \\ B(x) \ge 0 \end{cases}$$

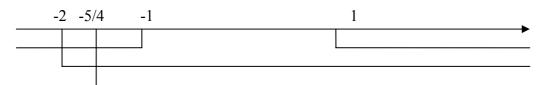
• se *n* è dispari all'equazione: $A(x) = [B(x)]^n$.

ESEMPIO

Risolvere la seguente equazione : $\sqrt{x^2 - 1} = x + 2$

Essa è equivalente al sistema : $\begin{cases} x^2 - 1 = (x+2)^2 \\ x^2 - 1 \ge 0 \\ x+2 \ge 0 \end{cases} \Leftrightarrow \begin{cases} x^2 - 1 - x^2 - 4x - 4 = 0 \\ x \le -1, \quad x \ge 1 \\ x \ge -2 \end{cases}$

$$\Leftrightarrow \begin{cases} x = -\frac{5}{4} \\ x \le -1, & x \ge 1 \end{cases}$$
 Graficamente si ha:
 $x \ge -2$



per cui l'unica soluzione è $x = -\frac{5}{4}$; lasciamo al lettore la verifica finale (osserva che l'elevamento a potenza di un polinomio porta generalmente all'introduzione di soluzioni spurie).

Un tipo di *disequazione irrazionale* è:

$$\sqrt[n]{A(x)} > B(x)$$
.

Si possono presentare due diversi casi:

- Se n è dispari, occorre risolvere la disequazione: $A(x) > [B(x)]^n$
- Se n è pari, occorre risolvere i due seguenti sistemi:

$$\begin{cases} A(x) \ge 0 \\ B(x) < 0 \end{cases} \quad \bigcup \quad \begin{cases} A(x) \ge 0 \\ B(x) \ge 0 \\ A(x) > [B(x)]^n \end{cases}.$$

L'equivalenza ovviamente è a meno di verifica finale.

ESEMPIO

Risolvere la seguente disequazione: $\sqrt{x^2 - 3x + 2} > x + 1$. La disequazione è equivalente ai due sistemi

$$\begin{cases} x^2 - 3x + 2 \ge 0 \\ x + 1 < 0 \end{cases} \quad \bigcup \quad \begin{cases} x^2 - 3x + 2 \ge 0 \\ x + 1 \ge 0 \end{cases} \Leftrightarrow \\ x^2 - 3x + 2 > x + 1 \end{cases}$$

$$\begin{cases} x \le 1, x \ge 2 \\ x < -1 \end{cases} \quad \bigcup \quad \begin{cases} x \le 1, x \ge 2 \\ x \ge -1 \\ x < 2 - \sqrt{3}, x > 2 + \sqrt{3} \end{cases} \Leftrightarrow \quad x < -1 \qquad \bigcup \quad -1 \le x < 2 - \sqrt{3}.$$

Pertanto l'insieme delle soluzioni della disequazione data è formato dalle x : $x < 2 - \sqrt{3}$.

1.7.11 Equazioni e disequazioni esponenziali

Si chiama equazione (disequazione) *esponenziale* un'equazione (una disequazione) in cui la variabile x (oppure un polinomio da essa dipendente) figura come base o esponente di una potenza.

L'equazione $a^{p(x)} = b$, b > 0 è equivalente a risolvere l'equazione algebrica $p(x) = \log_a b$.

La disequazione $a^{p(x)} > b$ è equivalente, se b > 0, alla disequazione $p(x) > \log_a b$ se a > 1 oppure alla disequazione $p(x) < \log_a b$ se 0 < a < 1; mentre è sempre verificata se $b \le 0$.

ESEMPI

- a. Risolvere la seguente equazione esponenziale $2^{x^2-1} = 3$. L'equazione equivale a $x^2 1 = \log_2 3 \iff x^2 = 1 + \log_2 3 \iff x = \pm \sqrt{1 + \log_2 3}$.
- b. Risolvere la seguente equazione esponenziale: $3^{2x} + 4 \cdot 3^x 12 = 0$. L'equazione equivale a $\begin{cases} 3^x = t \\ t^2 + 4t 12 = 0 \end{cases} \Leftrightarrow \begin{cases} 3^x = t \\ t = -6, \quad t = 2 \end{cases} \Leftrightarrow \begin{cases} 3^x = -6 \\ t = -6 \end{cases} \cup \begin{cases} 3^x = 2 \\ t = 2 \end{cases} \Leftrightarrow \Phi \cup x = \log_3 2,$ per cui la soluzione dell'equazione è $x = \log_3 2$.
- c. Risolvere la seguente disequazione esponenziale : $9^x 5 \cdot 3^x + 6 > 0$.

La disequazione equivale a:

$$3^{2x} - 5 \cdot 3^{x} + 6 > 0 \Leftrightarrow \begin{cases} 3^{x} = t \\ t^{2} - 5t + 6 > 0 \end{cases} \Leftrightarrow \begin{cases} 3^{x} = t \\ t < 2, \quad t > 3 \end{cases} \Leftrightarrow 3^{x} < 2 \quad \bigcup \quad 3^{x} > 3 \quad \Leftrightarrow$$

$$x < \log_{3} 2, \quad x > \log_{3} 3 = 1,$$

per cui la soluzione della disequazione iniziale è $x < \log_3 2$, x > 1.

d. Risolvere la seguente disequazione esponenziale : $\left(\frac{1}{2}\right)^{2(x-1)} < (2)^{x+4}$. La disequazione equivale a:

$$\left(\frac{1}{2}\right)^{2(x-1)} < \left(\frac{1}{2}\right)^{-(x-4)} \iff 2(x-1) > -(x+4) \iff 2x-2 > -x-4 \iff 3x > -2 \iff x > -\frac{2}{3}$$

per cui le soluzioni sono $x > -\frac{3}{2}$.

1.7.12 Equazioni e disequazioni logaritmiche

Si chiama equazione (disequazione) logaritmica un'equazione (una disequazione) in cui la variabile x (oppure un polinomio da essa dipendente) figura come argomento o base di un logaritmo.

L'equazione $\log_a p(x) = b$ con a > 0, $a \ne 1$ è equivalente a risolvere il sistema:

$$\begin{cases} p(x) > 0 \\ p(x) = a^b \end{cases}$$

La disequazione $\log_a p(x) < b = \log_a a^b$ con a > 0, $a \ne 1$ è equivalente al sistema $\begin{cases} p(x) > 0 \\ p(x) < a^b \end{cases}$ se a > 1

$$\begin{cases} p(x) > 0 \\ p(x) < a^b \end{cases} se \quad a > 1$$

oppure al sistema

$$\begin{cases} p(x) > 0 \\ p(x) > a^b \end{cases} se \quad 0 < a < 1.$$

ESEMPI

a. Risolvere la seguente equazione logaritmica: $\log_{\frac{1}{2}}(x^2-2x-2)=0$. Essa equivale al sistema

$$\begin{cases} x^2 - 2x - 2 > 0 \\ x^2 - 2x - 2 = 1 \end{cases} \Leftrightarrow \begin{cases} \Delta = 1 + 2 = 3; \quad x = 1 \pm \sqrt{3} \\ x^2 - 2x - 3 = 0 \end{cases} \Leftrightarrow \begin{cases} x < 1 - \sqrt{3}, \quad x > 1 + \sqrt{3} \\ x = -1, \quad x = 3 \end{cases}$$

Quindi le soluzioni dell'equazione sono : x = -1, x = 3

b. Risolvere la seguente disequazione : $\log_5(x^2 + x - 1) < 1$. Essa è equivalente al sistema

$$\begin{cases} x^2 + x - 1 > 0 \\ x^2 + x - 1 < 5 \end{cases} \Leftrightarrow \begin{cases} x < \frac{-1 - \sqrt{5}}{2}, & x > \frac{-1 + \sqrt{5}}{2}, \\ -3 < x < 2 \end{cases}$$

da cui, tramite intersezione grafica delle soluzioni, si ottiene:

$$-3 < x < \frac{-1 - \sqrt{5}}{2}$$
, $\frac{-1 + \sqrt{5}}{2} < x < 2$.

c. La disequazione : $(\lg x)^2 - 1 < 0$ equivale a risolvere

$$\begin{cases} \lg x = t \\ t^2 < 1 \end{cases} \Leftrightarrow \begin{cases} \lg x = t \\ -1 < t < 1 \end{cases} \Leftrightarrow \begin{cases} \lg x < 1 \\ \lg x > -1 \end{cases} \Leftrightarrow \begin{cases} 0 < x < e \\ x > \frac{1}{e} \end{cases},$$

le cui soluzioni sono : $\frac{1}{e} < x < e$.

d. Risolvere la seguente disequazione : $\lg_e(25^x - 2 \cdot 5^x + 2) > 0$. Essa equivale al sistema

$$\begin{cases} 25^{x} - 2 \cdot 5^{x} + 2 > 0 \\ 25^{x} - 2 \cdot 5^{x} + 2 > 1 \end{cases} \Leftrightarrow ponendo \ 5^{x} = t \quad \begin{cases} t^{2} - 2t + 2 > 0 \\ t^{2} - 2t + 1 > 0 \end{cases} \Leftrightarrow \begin{cases} \forall t \in R \\ (t - 1)^{2} > 0 \end{cases} \Leftrightarrow \begin{cases} \forall t \in R \\ \forall t \in R, t \neq 1 \end{cases}$$
per cui deve essere $5^{x} \neq 1 \Leftrightarrow x \neq 0$.

1.8 Insiemi limitati

Sia $X \subset \mathbb{R}$. $X \neq \Phi$:

DEFINIZIONE. Un numero reale L(1) si dice un maggiorante (minorante) per l'insieme X se $x \le L$ $(l \le x)$ $\forall x \in X$.

È bene notare esplicitamente che un insieme X non sempre ammette maggioranti o minoranti. Se, ad esempio, $X = \{x \in R : x \ge 0\}$, X non ammette maggioranti, mentre lo zero (ed anche un qualsiasi numero reale negativo) è un minorante di X.

DEFINIZIONE. Diremo che X è limitato superiormente (inferiormente) se ammette un maggiorante (minorante) e si dice limitato se è limitato sia inferiormente che superiormente

$$\Leftrightarrow \exists l, L \in \mathbb{R}: l \leq x \leq L, \forall x \in X.$$

Proposizione 1.3 $X \in limitato \Leftrightarrow \exists H > 0: -H \le x \le H, \forall x \in X$.

Dimostrazione: Dalla definizione, $X \in \mathbb{R}$ limitato $\Leftrightarrow \exists l, L \in \mathbb{R}: l \le x \le L \ \forall x \in X$; d'altra parte $\forall \alpha \in \mathbb{R} \Rightarrow -|\alpha| \le \alpha \le |\alpha|$ pertanto :

 $l \le x \le L$, $\forall x \in X \Leftrightarrow -(\left|l\right| + \left|L\right|) \le x \le \left|L\right| \le \left|l\right| + \left|L\right|$ $\forall x \in X$, da cui l'affermazione per $H = \left|l\right| + \left|L\right|$.

OSSERVAZIONE. Se K è un maggiorante di X (h un minorante di X) allora un qualunque k' > k (h' < h) è ancora un maggiorante (minorante) di X.

Assegnato $X \subseteq \mathbb{R}, X \neq \Phi$,

DEFINIZIONE. $M \in \mathbb{R}$ si dice massimo di X se:

- 1. $x \le M \quad \forall x \in X \ (M \ \dot{e} \ un \ maggiorante)$
- 2. $M \in X$.

Analogamente, $m \in \mathbb{R}$ si dice minimo di X se :

- 1. $m \le x \quad \forall x \in X \ (m \ \hat{e} \ un \ minorante)$
- 2. $m \in X$

OSSERVAZIONE. Non tutti i sottoinsiemi non vuoti di \mathbb{R} hanno massimo e minimo. Ad esempio se $A = \{x \in \mathbb{R}: x > 0\}$, A non ha né massimo né minimo (non esiste il più piccolo numero reale positivo; ad esempio lo zero è un minorante ma non è minimo perché non appartiene ad A).

OSSERVAZIONE. Si verifica facilmente che quando esistono, il massimo ed il minimo sono unici.

Teorema 1.4 (esistenza dell'estremo superiore) Sia $X \subseteq \mathbb{R}, X \neq \Phi$, limitato superiormente; allora esiste il minimo dell'insieme dei maggioranti di X.

Tale numero, denotato con sup X, viene chiamato *estremo superiore* di X, e, risulta evidente che (*prop. caratteristiche dell'estremo sup.*):

$$L = \sup X \iff \begin{cases} 1) \ x \le L \quad \forall x \in X \\ 2) \ \forall \varepsilon > 0 \quad \exists \ \overline{x} \in X : \quad \overline{x} > L - \varepsilon \end{cases}$$

infatti la proprietà 1) afferma che L è un maggiorante mentre la proprietà 2) equivale a dire che L è il più piccolo dei maggioranti. In maniera analoga si prova

Teorema 1.5 (esistenza dell'estremo inferiore) Sia $X \subseteq \mathbb{R}, X \neq \Phi$ limitato inferiormente; allora esiste il massimo dell'insieme dei minoranti di X.

Tale numero, che si denota con $\inf X$, si chiama l'estremo inferiore di X. Evidentemente (prop. caratteristiche dell'estremo inf.).:

$$l = \inf X \iff \begin{cases} 1' \ | \ l \le x \quad \forall x \in X \\ 2' \ | \ \forall \varepsilon > 0 \quad \exists \ \overline{x} \in X : \quad \overline{x} < l + \varepsilon \end{cases}$$

OSSERVAZIONE. Se un insieme $X \neq \Phi$ ha massimo M (minimo m) allora $M = \sup X$ ($m = \inf X$), infatti M è un maggiorante di X ed $M \in X$ pertanto sono verificate le due proprietà caratteristiche dell'estremo superiore (la prima è ovvia, la seconda per $\overline{x} = M$).

Infine, sia $X \subset \mathbb{R}, X \neq \Phi$

DEFINIZIONE. X si dice non limitato superiormente (inferiormente) se non ammette maggioranti (minoranti) $\Leftrightarrow \forall k \in \mathbb{R} \ \exists \bar{x} \in X : \bar{x} > k \text{ (risp. } \forall h \in \mathbb{R} \ \exists x^* \in X : x^* < h \text{)}.$

OSSERVAZIONE. Nelle relazioni precedenti ci si può limitare a considerare k>0 ed h<0.

ESEMPIO

Dire se l'insieme numerico $X = \left\{ \frac{1}{x}, 0 < x \le 1 \right\}$ è limitato superiormente e/o inferiormente e calcolare, in caso affermativo, l'estremo inferiore e l'estremo superiore, precisando se sono minimo e massimo rispettivamente.

Osserviamo che $1 \le \frac{1}{x} \quad \forall x : 0 < x \le 1$ da cui X è limitato inferiormente e poiché $1 \in X \implies 1 = \min X = \inf X$.

 $1 \in X \implies 1 = \min X = \inf X$. Proviamo che X non è limitato superiormente $\iff \forall k > 0 \quad \exists \, \overline{x} : 0 < \overline{x} \le 1 \implies \frac{1}{\overline{x}} > k$.

Osserviamo che il sistema $\begin{cases} 0 < x \le 1 \\ \frac{1}{x} > k \end{cases} \Leftrightarrow \begin{cases} 0 < x \le 1 \\ x < \frac{1}{k} \end{cases}$ ammette, qualunque sia k > 0, infinite soluzioni.